100 bài tập số phức mới nhất

Tháng Một 14, 2024

100 bài tập số phức mới nhất

100 bài tập số phức mới nhất

Số phức là một trong những phần kiến thức trọng tâm trong chương trình Đại số 12. Vì vậy việc luyện giải bài tập liên quan đến số phức, hàm biến phức là vô cùng quan trọng. Trong bài viết dưới đây chúng mình đã tổng hợp lại các dạng toán liên quan đến số phức và 100 bài tập số phức từ mức độ cơ bản đến vận dụng cao. 

Các dạng bài tập số phức

Các dạng bài tập số phức

Các dạng bài tập số phức

Dạng 1. Các phép tính về số phức

Dạng bài này cần áp dụng những công thức về phép cộng, trừ và phép nhân chia số phức: 

  • Phép cộng số phức: 

(a + bi) + (c + di) = (a + c) + (b + d)i

  • Phép trừ số phức: 

(a + bi) - (c + di) = (a - c) + (b - d)i

  • Phép nhân số phức:

(a + bi)(c + di) = (ac - bd) + (bc + ad)i

  • Phép chia số phức:
Phép chia số phức

Phép chia số phức

  • Mô đun của số phức là căn bậc 2 số học (căn bậc 2 không âm) của a2+b2. Modun của số phức z = a+bi là z hoặc a+bi
  • Tập hợp điểm biểu diễn của số phức
  • Số phức z = a + bi, (a,b ∈ R) biểu diễn điểm M(a, b).
  • Ngược lại điểm M(a, b) biểu diễn số phức
    z = a + bi.

👉 Xem thêm: Đề thi THPT Quốc Gia 2024 Môn Toán mới nhất
👉 Xem thêm: Bộ 20 đề thi thử THPT quốc gia 2024 môn toán (Có Lời Giải)
👉 Xem thêm: Tài liệu ôn thi THPT quốc gia 2024 môn toán
👉 Xem thêm: Bộ đề thi tham khảo THPT quốc gia 2024 môn toán
👉 Xem thêm: Cấu trúc đề thi thpt quốc gia môn toán 2024
👉 Xem thêm: Tổng hợp công thức toán thi thpt quốc gia mới nhất  

Dạng 2. Biểu diễn hình học của số phức và ứng dụng

Mỗi số phức z = a + bi (a, b ∈ R) được biểu diễn bởi một điểm M(z) = (a, b) trên mặt phẳng tọa độ Ox Oy.

Trong đó:

  • Hoành độ của điểm M(z) là phần thực của số phức z.
  • Tung độ của điểm M(z) là phần ảo của số phức z.

Vậy, trục Ox được gọi là trục thực, Oy được gọi là trục ảo.

Biểu diễn hình học của số phức có nhiều ứng dụng trong giải tích số phức, chẳng hạn như:

  • Tính mô đun và argument của số phức:
  • Mô đun của số phức z = a + bi là độ dài của đoạn thẳng OM(z).
  • Argument của số phức z = a + bi là góc giữa đường thẳng OM(z) và trục Ox.
  • Thực hiện các phép toán số phức:
  • Các phép toán cộng, trừ, nhân, chia, tìm số phức liên hợp, tìm số phức nghịch đảo của số phức z = a + bi có thể được thực hiện bằng cách thực hiện các phép toán tương ứng trên các điểm M(z) và M(-z) trên mặt phẳng tọa độ.
  • Xác định tập hợp điểm biểu diễn của số phức: Tập hợp điểm biểu diễn của số phức z = a + bi là một đường tròn có tâm tại điểm (a, 0) và bán kính bằng |z|.
  • Nhiều phương trình số phức có thể được giải bằng cách sử dụng biểu diễn hình học của số phức. 

Dạng 3. Căn bậc hai của số phức và phương trình bậc hai

  • Căn bậc hai của số phức z = a + bi là một số phức u = x + yi thỏa mãn u^2 = z. 
  • Một phương trình bậc hai của số phức có dạng: az^2 + bz + c = 0. 
  • Có nhiều cách giải phương trình bậc hai, trong đó có hai cách phổ biến sau:
  • Cách dùng phương pháp hoành độ
  • Cách dùng phương pháp lượng giác

Dạng 4. Phương trình quy về bậc hai 

Một phương trình quy về bậc hai là một phương trình có dạng tổng quát như sau: f(z) = az^2 + bz + c = 0, trong đó, a, b, c là các số phức với a ≠ 0.

Có nhiều cách giải phương trình quy về bậc hai:

  • Phương pháp hoành độ
  • Phương pháp lượng giác
  • Phương pháp đặt ẩn phụ
  • Lưu ý: Cách giải phương trình quy về bậc hai bằng cách đặt ẩn phụ là một cách giải khá đơn giản và dễ nhớ. Tuy nhiên, cách giải này chỉ áp dụng được cho các phương trình quy về bậc hai có dạng tổng quát như sau: f(z) = az^2 + bz + c = 0, trong đó, b ≠ 0.  

Dạng 5. Dạng lượng giác của số phức

Mỗi số phức z = a + bi (a, b ∈ R) có thể được biểu diễn dưới dạng lượng giác như sau: z = r(cos φ + i sin φ)

Trong đó:

r là mô đun của số phức z.

φ là argument của số phức z.

Dạng 6. Cực trị của số phức

Cực trị của số phức là các điểm biểu diễn của số phức có mô đun lớn nhất hoặc nhỏ nhất.

Để tìm cực trị của số phức, ta có thể sử dụng các cách sau:

  • Tìm bằng phương pháp đại số.
  • Theo định nghĩa, cực trị của số phức là các điểm biểu diễn của số phức có mô đun lớn nhất hoặc nhỏ nhất.
  • Tìm bằng phương pháp lượng giác.

Theo dạng lượng giác của số phức, mô đun của số phức z = r(cos φ + i sin φ) là: |z| = r

Để tìm cực trị của số phức z, ta có thể tìm các điểm biểu diễn của số phức z thỏa mãn: r = r max hoặc: r = r min

Trong đó, r max là mô đun lớn nhất của số phức z và r min là môđun nhỏ nhất của số phức z. 

👉 Xem thêm: 100 bài tập đạo hàm
👉 Xem thêm: 100 bài tập lũy thừa lớp 12
👉 Xem thêm: 100 bài tập hàm số mũ và logarit
👉 Xem thêm: 100 bài tập nguyên hàm
👉 Xem thêm: 100 bài tập tích phân
👉 Xem thêm: 100 bài tập khối đa diện
👉 Xem thêm: 100 bài tập hình học không gian 11
👉 Xem thêm: 100 bài tập xác suất lớp 11
👉 Xem thêm: 100 bài tập cấp số nhân
👉 Xem thêm: 100 bài tập cấp số cộng 

Ví dụ bài tập số phức 

Ví dụ 1: Cho số phức z thỏa mãn z+3 = 5 và z-2i = z-2-2i. Tính z

  1. z = 17
  2. z = 17 
  3. z = 10
  4. z =  10

Đáp án: C

Hướng dẫn giải: 

Gọi số phức cần tìm là z = a+bi (a,b R), thay vào các hệ thức trong bài tìm A và B => z =z

Công thức tính mô đun số phức z = a2+b2 

Ví dụ 2: 

Có bao nhiêu số phức Z thỏa mãn đồng thời các điều kiện:

z-1 = 5 và z2 là số thuần ảo. 

  1. 1
  2. 0
  3. 4
  4. 2

Đáp án: C

Hướng dẫn giải: 

Gọi số phức cần tìm là z = a+bi (a,b R), thay vào các hệ thức trong bài tìm a và b => z 

Số phức: z = a+bi là thuần aoe nếu a = 0

Công thức tính mô đun số phức z = a2+b2

Banner TNNN2 1

Ví dụ 3:

Trong hệ tọa độ Oxy cho điểm M biểu diễn số phức z = -2+3i. 

Gọi N là điểm thuộc đường thẳng y = 3 sao cho tam giác OMN cân tại O. Điểm N là điểm biểu diễn của số phức nào dưới đây? 

  1. z = 3 - 2i
  2. z = -2 - 2i
  3. 2 + 3i
  4. -2 + i

Đáp án: C 

Hướng dẫn giải: 

  • Số phức z = a + bi (a,b R) được biểu diễn bởi điểm M (a,b) trên mặt phẳng tọa độ. 
  • Tam giác OMN cân tại O OM = ON 

Tham khảo 100 bài tập chuyên đề số phức tại: 

Ví dụ bài tập số phức với BTEC FPT

Ví dụ bài tập số phức với BTEC FPT

Trên đây là danh sách 100 bài tập số phức do chúng mình tổng hợp được. Hy vọng đây sẽ là tài liệu hữu ích cho các bạn trong quá trình học tập. BTEC FPT chúc bạn đạt điểm số cao trong kỳ thi sắp tới. 

btec BTEC FPT

Tin tức mới nhất

Xem tất cả
SẴN SÀNG BỨT PHÁ TRONG KỶ NGUYÊN TRÍ TUỆ NHÂN TẠO CÙNG WORKSHOP “READY FOR AI” Tháng Tám 15, 2025
Ngày 13/08/2025, không khí tại FPT BTEC Đà Nẵng trở nên sôi động hơn bao giờ hết khi workshop “READY FOR AI” chính thức diễn ra. Chương trình do Sở Khoa học & Công nghệ Đà Nẵng phối hợp cùng ...
Semiconductor Student Exchange: FPT BTEC và Đại Học Kyungil - Kết Nối Tri Thức, Mở Rộng Tầm Nhìn Toàn Cầu Tháng Tám 15, 2025
Vừa qua, tại cơ sở FPT BTEC TP. Hồ Chí Minh đã diễn ra chương trình Semiconductor Student Exchange: FPT BTEC × Kyungil University - hoạt động giao lưu học thuật và văn hóa đặc biệt giữa sinh viên ngành ...
Cô Võ Thị Bảo Trân và hành trình từ bỏ mức lương “nghìn đô” để trở thành giảng viên "xịn xò" tại FPT BTEC Cần Thơ Tháng Tám 14, 2025
Trong khi nhiều người mơ ước một công việc nghìn đô ổn định tại nước ngoài, thì cô Võ Thị Bảo Trân - Thạc sĩ ngành Materials Engineering, đã đưa ra một quyết định “ngược dòng” đầy cảm hứng: từ ...
HÀNH TRÌNH CHẠM ĐỈNH VINH QUANG CỦA NÔNG AN - QUÁN QUÂN CHÂN TRẦN KHỞI NGHIỆP MÙA 2 “AI & STARTUP - BỆ PHÓNG THẾ HỆ TRẺ” Tháng Tám 12, 2025
Cuộc thi Chân Trần Khởi Nghiệp mùa 2 “AI & Startup - Bệ phóng thế hệ trẻ” đã chính thức khép lại, nhưng cái tên Nông An vẫn tiếp tục được nhắc đến với sự ngưỡng mộ. Họ không chỉ ...
Sinh viên Thiết kế Đồ họa FPT BTEC Đà Nẵng: Khơi dậy lòng yêu nước cho thế hệ trẻ, mang “Hào khí Điện Biên Phủ” vào dự án game Tháng Tám 12, 2025
Trong bối cảnh thế hệ trẻ đang tiếp cận lịch sử qua lăng kính công nghệ, một nhóm sinh viên chuyên ngành Thiết kế đồ họa FPT BTEC Đà Nẵng đã tạo nên dấu ấn đặc biệt. Với dự án ...
Cao Trường Nam - Từ sinh viên Marketing đến hành trình trở thành Content Social Media tài năng Tháng Tám 11, 2025
Cao Trường Nam, sinh viên chuyên ngành Marketing tại FPT BTEC, là một trong những gương mặt tiêu biểu của thế hệ Gen Z năng động - dám nghĩ, dám làm. Không chỉ sở hữu tư duy sắc bén của ...

Nhập học liền tay

Nhận ngay học bổng lên tới 70% học phí