100 bài tập nguyên hàm mới nhất

Tháng Một 12, 2024

100 bài tập nguyên hàm mới nhất

100 bài tập nguyên hàm

Để ôn thi tốt các dạng bài tập nguyên hàm tích phân là 1 phần quan trọng chiếm nhiều điểm trong phần ôn thi vì vậy để đạt kết quả cao cần luyện tập giải bài tập nhiều các dạng bài tập nguyên hàm và tích phân. Trong bài viết dưới đây, BTEC FPT đã tổng hợp lại các dạng bài tập nguyên hàm và file 100 bài tập trắc nghiệm nguyên hàm cho các bạn học sinh ôn luyện. 

Các dạng bài tập nguyên hàm

Các dạng bài tập nguyên hàm

Dạng 1: Tìm nguyên hàm của hàm số bằng định nghĩa và tính chất

Đối với dạng bài tập này học sinh cần áp dụng các định nghĩa và tính chất sau: 

  • Định nghĩa: Cho hàm số f(x) xác định trên K (K là khoảng, đoạn hay nửa khoảng). Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F'(x) = f(x) với mọi x ∈ K.
  • Tính chất: 
  • Tính chất 1: (∫f(x)dx)' = f(x) và ∫f'(x)dx = f(x) + C
  • Tính chất 2: ∫kf(x)dx = k∫f(x)dx với k là hằng số khác 0.
  • Tính chất 3: ∫[f(x) ± g(x)]dx = ∫f(x)dx ± ∫g(x)dx

👉 Xem thêm: Đề thi THPT Quốc Gia 2024 Môn Toán mới nhất
👉 Xem thêm: Bộ 20 đề thi thử THPT quốc gia 2024 môn toán (Có Lời Giải)
👉 Xem thêm: Tài liệu ôn thi THPT quốc gia 2024 môn toán
👉 Xem thêm: Bộ đề thi tham khảo THPT quốc gia 2024 môn toán
👉 Xem thêm: Cấu trúc đề thi thpt quốc gia môn toán 2024
👉 Xem thêm: Tổng hợp công thức toán thi thpt quốc gia mới nhất  

Dạng 2: Tìm nguyên hàm bằng phương pháp đổi biến số 

Phương pháp này dựa trên việc biến đổi biến số x thành một biến số mới t bằng một hàm số u(x). Sau đó, ta có thể tính tích phân f(x)dx bằng cách tính tích phân f(u(t))dt.

Các bước thực hiện phương pháp đổi biến số như sau:

  • Đặt t = u(x)
  • Tính vi phân dt = u'(x)dx
  • Biểu thị f(x) theo t và dt
  • Tính tích phân: ∫f(x)dx = ∫f(u(t))u'(t)dt

Một số lưu ý khi sử dụng phương pháp đổi biến số:

  • Phương pháp này chỉ áp dụng được cho các hàm số f(x) có thể được biểu thị theo t và dt.
  • Nếu hàm số f(x) không thể được biểu thị theo t và dt, thì phương pháp này không áp dụng được.

Dưới đây là một số công thức đổi biến số thường gặp:

  • Nếu t = ax + b, thì dt = adx.
  • Nếu t = e^x, thì dt = e^x dx.
  • Nếu t = sin(x), thì dt = cos(x) dx.
  • Nếu t = cos(x), thì dt = -sin(x) dx.

Dạng 3: Tìm nguyên hàm từng phần 

Đề bài: Cho hai hàm số u = u(x) và v = v(x) có đạo hàm liên tục trên K

Dạng này cần áp dụng công thức nguyên hàm từng phần: ∫udv = uv−∫vdu.

Để tính nguyên hàm từng phần, ta thực hiện theo các bước sau:

  • Lựa chọn hàm u và dv theo quy tắc đặt u.
  • Tính nguyên hàm ∫udv.
  • Tính nguyên hàm ∫vdu.
  • Cộng hai nguyên hàm vừa tính được.

Chú ý: Phương pháp nguyên hàm từng phần được sử dụng nếu đề bài có dạng I=∫f(x).g(x)dx, trong đó f(x) và g(x) là 2 trong 4 hàm số: Hàm số logarit, hàm số đa thức, hàm số lượng giác hoặc hàm số mũ. 

Dạng 4: Tìm nguyên hàm của hàm số hữu tỉ 

Các phương pháp tìm nguyên hàm của hàm số hữu tỉ:

  • Phương pháp chia đa thức: 
  • Phương pháp này được áp dụng khi hàm số cần lấy nguyên hàm có bậc của tử số nhỏ hơn bậc của mẫu số. 
  • Phương pháp này chỉ áp dụng được cho các hàm số hữu tỉ có dạng P(x)/Q(x).
  • Trong trường hợp bậc của tử số P(x) bằng bậc của mẫu số Q(x), thì hàm số hữu tỉ ban đầu có thể tính được bằng cách sử dụng các nguyên hàm cơ bản.
  • Phương pháp đồng nhất thức: 

Giả sử hàm số có dạng f(x) = P(x)/Q(x). Trong đó: Q(x) = (x+m)(x+n)

Ta đưa P(x) = ux+v về dạng P(x) = a(x+m)+b(x+n) 

Từ đó suy ra f(x) = a/x+n + b/x+m. 

  • Phương pháp đưa về dạng lượng giác: 

Đối với những hàm số hữu tỉ không thể áp dụng theo hai phương pháp trên, có thể đưa dạng đó về dạng lượng giác, sau đó áp dụng công thức tính nguyên hàm để tìm nguyên hàm của hàm số hữu tỉ đó.  

Dạng 5: Tìm nguyên hàm thỏa mãn điều kiện cho trước 

Để tìm nguyên hàm thỏa mãn điều kiện cho trước cần thực hiện theo các bước sau:

Bước 1: Tìm nguyên hàm của hàm số f(x) bằng các phương pháp đã biết: sử dụng bảng nguyên hàm, phương pháp đổi biến số, phương pháp từng phần,...

Bước 2: Dựa vào yêu cầu của bài toán tìm ra hằng số C tương ứng.

Lưu ý:

  • Nếu bài toán cho nhiều điều kiện cho trước, ta cần giải hệ phương trình để tìm ra hằng số C.
  • Nếu hàm số f(x) có nhiều nguyên hàm, ta cần tìm nguyên hàm thỏa mãn điều kiện cho trước. 

👉 Xem thêm: 100 bài tập đạo hàm
👉 Xem thêm: 100 bài tập lũy thừa lớp 12
👉 Xem thêm: 100 bài tập hàm số mũ và logarit
👉 Xem thêm: 100 bài tập tích phân
👉 Xem thêm: 100 bài tập số phức
👉 Xem thêm: 100 bài tập khối đa diện
👉 Xem thêm: 100 bài tập hình học không gian 11
👉 Xem thêm: 100 bài tập xác suất lớp 11
👉 Xem thêm: 100 bài tập cấp số nhân
👉 Xem thêm: 100 bài tập cấp số cộng 

Banner TNNN2 1

Ví dụ bài tập nguyên hàm

Sau khi nắm vững kiến thức về các dạng bài tập nguyên hàm, các bạn học sinh có thể tham khảo các ví dụ dưới đây:

Ví dụ 1: Tìm một nguyên hàm F(x) của hàm số f(x) với

Họ các nguyên hàm của hàm số f(x) = 5x4-6x2+1

Bài tập tìm một nguyên hàm f(x) của hàm số f(x)

Bài tập tìm một nguyên hàm f(x) của hàm số f(x)

Hướng dẫn giải: 

Ta có: 

(5x4-6x2 +1)dx = x5-2x3+x+C  

Ví dụ 2: Khẳng định nào sau đây sai?

Bài tập nguyên hàm

Bài tập nguyên hàm

Hướng dẫn giải: 

Ta có: 

(1x)dx = lnx+C => C sai

Ví dụ 3: Nguyên hàm của hàm số  y = x2-3x+ 13 là: 

Bài tập nguyên hàm của hàm số

Bài tập nguyên hàm của hàm số

Hướng dẫn giải: 

Áp dụng công thức nguyên hàm ta có 

(x2-3x +1x)dx = x33-3x22+ lnx+C  

Tham khảo thêm 100 bài tập nguyên hàm và tích phân tại: 

Ví dụ bài tập nguyên hàm với BTEC FPT

Ví dụ bài tập nguyên hàm với BTEC FPT

Bài viết trên tổng hợp 100 bài tập nguyên hàm có đáp án và lời giải chi tiết. Hy vọng bộ tài liệu này sẽ giúp ích cho các bạn trong quá trình ôn thi THPT Quốc Gia. BTEC FPT chúc bạn đạt kết quả cao trong kỳ thi sắp tới!

 

btec BTEC FPT

Tin tức mới nhất

Xem tất cả
BIG OFFLINE CLB FPT BTEC: THE ESSENCE VOYAGE – HÀNH TRÌNH SẮC MÀU KẾT NỐI BẢN SẮC SINH VIÊN Tháng Mười Một 10, 2025
Vừa qua, Phòng CTSV FPT BTEC HCM đã tổ chức thành công Big Offline CLB – The Essence Voyage, chương trình giao lưu và kết nối toàn thể các Câu lạc bộ sinh viên tại trường. Sự kiện có sự ...
ĐI HỌC MÀ NHƯ ĐI LÀM THỰC TẾ TẠI FPT BTEC LÀ CẢM GIÁC NHƯ THẾ NÀO? Tháng Mười Một 7, 2025
Không chỉ chú trọng lý thuyết trên giảng đường, FPT BTEC coi “học đi đôi với hành” là kim chỉ nam trong đào tạo. Bên cạnh chương trình chuẩn Anh Quốc, nhà trường thường xuyên tổ chức các chuyến tham ...
HARMONY SMASH CUP 2025 – CẦU NỐI VĂN HÓA VÀ TINH THẦN THỂ THAO CỦA SINH VIÊN QUỐC TẾ Tháng Mười Một 6, 2025
Giải cầu lông Harmony Smash Cup 2025 đã khép lại với thật nhiều cảm xúc và khoảnh khắc đáng nhớ, đánh dấu một mùa thi đấu thành công rực rỡ của sinh viên FPT BTEC HCM. Không chỉ là sân ...
LÊ HOÀNG ĐỨC – TÂN THỦ KHOA NGÀNH QUẢN TRỊ KINH DOANH VÀ HÀNH TRÌNH KIÊN ĐỊNH VỚI NIỀM TIN THÀNH CÔNG Tháng Mười Một 4, 2025
Giữa khoảnh khắc trang nghiêm và xúc động của Lễ Tốt Nghiệp “A Compass For Every Dream” tại Nhà hát Trưng Vương, khi tiếng gọi tên Lê Hoàng Đức - BD00447 được xướng lên, cả khán phòng Nhà hát Trưng ...
NỮ THỦ KHOA NGÀNH LẬP TRÌNH TRẦN THỊ YẾN NHI – KHI ĐAM MÊ TRỞ THÀNH “LA BÀN” DẪN LỐI THÀNH CÔNG Tháng Mười Một 4, 2025
Trong buổi Lễ tốt nghiệp “A Compass For Every Dream” 2025 vừa qua, giữa khán phòng rực sáng ánh đèn tại Nhà hát Trưng Vương, tân khoa Trần Thị Yến Nhi (BD00466) - Thủ khoa ngành Lập trình máy tính ...
4 CÂU CHUYỆN, 1 TINH THẦN – NGỌN LỬA CAM DẪN ĐƯỜNG CHO THẾ HỆ SINH VIÊN FPT BTEC Tháng Mười Một 4, 2025
Trong không khí trang trọng và đầy cảm xúc của Lễ Tôn Vinh kỳ Summer 2025 “A Compass For Every Dream”, sân khấu nhà hát Trưng Vương Đà Nẵng lại một lần nữa bừng sáng với khoảnh khắc đặc biệt: ...

Nhập học liền tay

Nhận ngay học bổng lên tới 70% học phí

  • Đồng ý để dữ liệu cá nhân của Anh/Chị được thu thập trên trang này, được xử lý và lưu trữ bởi FPT BTEC - Trường Cao đẳng FPT Polytechnic (đơn vị thành viên của Công ty TNHH Giáo dục FPT hay còn gọi là Tổ chức giáo dục FPT) cho mục đích và theo điều kiện đã được công bộ tại Quy định bảo vệ dữ liệu cá nhân của Tổ chức giáo dục FPT tại đây.