100 bài tập đạo hàm mới nhất

Tháng Một 9, 2024

100 bài tập đạo hàm mới nhất

100 bài tập đạo hàm mới nhất

Đạo hàm là phần kiến thức trọng tâm và không thể thiếu trong đề thi THPT Quốc Gia hàng năm. Để các bạn học sinh có sự ôn luyện và chuẩn bị tốt nhất, BTEC FPT đã tổng hợp lại các quy tắc tính đạo hàm và 100 bài tập đạo hàm bao gồm các bài tập đạo hàm từ cơ bản đến nâng cao có kèm hướng dẫn giải. Các bạn hãy tham khảo trong bài viết dưới đây nhé! 

Các dạng bài tập đạo hàm

Các dạng bài tập đạo hàm

Các dạng bài tập đạo hàm

Dạng 1: Tính đạo hàm bằng định nghĩa

Cho hàm số y = f(x). Hãy tính đạo hàm của hàm số f(x) bằng định nghĩa đạo hàm.

Bước 1: Với Δx là số gia của số đối tại x0 ,tính Δy = f(x0 + Δx) - f(x0);

Bước 2. Lập tỉ số: Δy/Δx;

Bước 3. Tính limΔx->0 Δy/Δx

Nhận xét: nếu thay x0 bởi x ta có định nghĩa và quy tắc tính đạo hàm của hàm số y=f(x) tại điểm x∈(a;b).

👉 Xem thêm: Đề thi THPT Quốc Gia 2024 Môn Toán mới nhất
👉 Xem thêm: Bộ 20 đề thi thử THPT quốc gia 2024 môn toán (Có Lời Giải)
👉 Xem thêm: Tài liệu ôn thi THPT quốc gia 2024 môn toán
👉 Xem thêm: Bộ đề thi tham khảo THPT quốc gia 2024 môn toán
👉 Xem thêm: Cấu trúc đề thi thpt quốc gia môn toán 2024
👉 Xem thêm: Tổng hợp công thức toán thi thpt quốc gia mới nhất  

Dạng 2: Đạo hàm của đa thức - Hữu tỉ - Căn thức

Dạng này thường có các yêu cầu sau: 

  • Tính đạo hàm của hàm số y = mx + n.
  • Tính đạo hàm của hàm số y = ax/b.
  • Tính đạo hàm của hàm số y = √x.

Dạng này cần nhớ và áp dụng những công thức sau:

Công thức đạo hàm của đa thức hữu tỉm căn thức

Công thức đạo hàm của đa thức hữu tỉm căn thức

Dạng 3: Tính đạo hàm của hàm số lượng giác

Dạng bài này cần áp dụng những công thức sau:

Công thức tính đạo hàm của hàm số lượng giác

Công thức tính đạo hàm của hàm số lượng giác

Dạng 4: Tìm đạo hàm của hàm số

Dạng này thường có những yêu cầu sau: 

  • Cho hàm số y = f(x) có dạng tổng, hiệu, tích, thương của các hàm số đơn giản. Hãy tìm đạo hàm của hàm số f(x).
  • Cho hàm số y = f(x) có dạng lượng giác. Hãy tìm đạo hàm của hàm số f(x).

Dạng 5: Bài toán chứng minh, giải phương trình, bất phương trình

Dạng này thường có những yêu cầu sau: 

  • Cho hàm số y = f(x). Chứng minh rằng hàm số f(x) có đạo hàm tại mọi điểm trong miền xác định của nó.
  • Cho hàm số y = f(x). Giải phương trình y' = 0.
  • Cho hàm số y = f(x). Giải bất phương trình y' > 0.

Dạng 6: Bài tập đạo hàm vận dụng, vận dụng cao

Dạng này thường có những yêu cầu sau: 

  • Viết phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm (a, f(a)).
  • Tìm điểm cực trị của hàm số y = f(x).
  • Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = f(x) trên một đoạn.

Giữ chỉ tiêu sớm

Nhận ngay học bổng lên tới 70% học phí

  • Đồng ý để dữ liệu cá nhân của Anh/Chị được thu thập trên trang này, được xử lý và lưu trữ bởi FPT BTEC - Trường Cao đẳng FPT Polytechnic (đơn vị thành viên của Công ty TNHH Giáo dục FPT hay còn gọi là Tổ chức giáo dục FPT) cho mục đích và theo điều kiện đã được công bộ tại Quy định bảo vệ dữ liệu cá nhân của Tổ chức giáo dục FPT tại đây.

Ví dụ bài tập đạo hàm

Ví dụ 1: Tính đạo hàm của các hàm số tại các điểm x0 sau:

  1. a) y = 7 + x –x 2, với x0 = 1
  2. b) y = 3x2 – 4x + 9, với x0 = 1 

Hướng dẫn giải: 

a) y = 7 + x – x2

Ta có: y' = 1 – 2x

Vậy y'(1) = 1 – 2. 1 = –1.

b) y = 3x2 – 4x + 9

Ta có: y' = 6x – 4

Vậy y'(1) = 6.1 – 4 = 2.

Ví dụ 2: Tính các đạo hàm của các hàm số sau:

a) y = –x3 + 3x + 1

b) y = (2x – 3)(x5 – 2x)

Hướng dẫn giải:

  1. a) y’ = (–x3 + 3x + 1)’ = –3x2 + 3
  2. b) y = (2x – 3)(x5 – 2x).

y’ = [(2x – 3)(x5 – 2x)]’

= (2x – 3)’.(x5 – 2x) + (x5 – 2x)’.(2x – 3)

= 2(x5 – 2x) + (5x4 – 2)(2x – 3)

= 12x5 – 15x4 – 8x + 6. 

Ví dụ 3: Tính đạo hàm các hàm số sau tại các điểm tương ứng:

Bài tập tính đạo hàm các hàm số sau tại các điểm tương ứng

Bài tập tính đạo hàm các hàm số sau tại các điểm tương ứng

Hướng dẫn giải: 

Hướng dẫn giải tính đạo hàm các hàm số sau tại các điểm tương ứng

Hướng dẫn giải tính đạo hàm các hàm số sau tại các điểm tương ứng

👉 Xem thêm: 100 bài tập lũy thừa lớp 12
👉 Xem thêm: 100 bài tập hàm số mũ và logarit
👉 Xem thêm: 100 bài tập nguyên hàm
👉 Xem thêm: 100 bài tập tích phân
👉 Xem thêm: 100 bài tập số phức
👉 Xem thêm: 100 bài tập khối đa diện
👉 Xem thêm: 100 bài tập hình học không gian 11
👉 Xem thêm: 100 bài tập xác suất lớp 11
👉 Xem thêm: 100 bài tập cấp số nhân
👉 Xem thêm: 100 bài tập cấp số cộng 

Banner TNNN2 1

Danh sách bài tập đạo hàm

Bài tập 1: Cho hàm số y = x3 – 6x2 + 7x + 5 (C), trên (C) những điểm có hệ số góc tiếp tuyến tại điểm nào bằng 2?

A. (–1; –9); (3; –1)

B. (1; 7); (3; –1)

C. (1; 7); (–3; –97)

D. (1; 7); (–1; –9) 

Bài tập 2: Tìm hệ số góc của tiếp tuyến với đồ thị y = tanx tại điểm có hoành độ: x=π/4

A. k = 1 B. k = 1/2 C. k =√2/2    D. 2

Bài tập 3: Cho đường cong (C): y = x2. Phương trình tiếp tuyến của (C) tại điểm M(–1; 1) là:

  1. y = –2x + 1 B. y = 2x + 1 C. y = –2x – 1 D. y = 2x – 1 

Bài tập 4: Cho hàm số y=(x2+x)/(x-2)  . Phương trình tiếp tuyến tại A(1; –2) là:

  1. y = –4(x–1) – 2 B. y = –5(x–1) + 2 C. y = –5(x–1) – 2 D. y = –3(x–1) – 2  

Bài tập 5: Cho hàm số y =  1/3x3 – 3x2 + 7x + 2. Phương trình tiếp tuyến tại A(0; 2) là:

  1. y = 7x +2 B. y = 7x – 2 C. y = –7x + 2 D. y = –7x –2 

Bài tập 6: Cho hàm số y = x3 – 3x2 – 9x – 5. Phương trình y = 0 có nghiệm là:

  1. {–1; 2} B. {–1; 3} C. {0; 4} D. {1; 2} 

Bài tập 7: Cho hàm số f(x) xác định trên R bởi f(x) = 2x2 + 1. Giá trị f(–1) bằng:

  1. 2 B. 6 C. –6 D. 3

Bài tập 8: Cho hàm số f(x) xác định trên R bởi f(x)=3√x  .Giá trị f(–8) bằng:

  1. 1/12 B. – 1/12 C.  1/6 D. – 1/6

Bài tập 9: Cho hàm số (C): y = 2x3 -2x + 1

  1. a) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm I(1, –2).
  2. b) Chứng minh rằng các tiếp tuyến khác của đồ thị (C) không đi qua I

Tham khảo thêm bài tập đạo hàm tại: 

Danh sách bài tập đạo hàm với btec fpt

Danh sách bài tập đạo hàm với btec fpt

Trên đây là các dạng bài tập có kèm ví dụ và danh sách các bài tập đạo hàm trọng tâm cho các bạn học sinh luyện tập. Hy vọng với bài viết trên các bạn sẽ có thêm kiến thức hữu ích để giải các dạng bài tập về đạo hàm. Chúc bạn đạt kết quả tốt trong kỳ thi sắp tới!

 

btec BTEC FPT

Tin tức mới nhất

Xem tất cả
THANH XUÂN GỌI TÊN TRONG SẮC VÀNG HỘI NGỘ - HOMECOMING “GOLDEN REUNION 2025” Tháng Mười Một 25, 2025
Ngày 20/11/2025, tại Cao đẳng Anh Quốc FPT BTEC Đà Nẵng, sự kiện Homecoming “Golden Reunion” đã diễn ra trong không khí ấm áp, giàu cảm xúc và đầy ắp những khoảnh khắc đáng nhớ. Đây là ngày hội gặp ...
KHI ĐI HỌC LÀ HÀNH TRÌNH PHIÊU LƯU XUYÊN QUỐC GIA CỦA SINH VIÊN FPT BTEC Tháng Mười Một 21, 2025
Trong môi trường giáo dục quốc tế tại FPT BTEC, sinh viên không chỉ tiếp cận kiến thức chuyên môn mà còn được “du lịch tại chỗ” thông qua những buổi giao lưu trực tiếp với đội ngũ giảng viên ...
CÔ PHAN HOÀNG YẾN - NGƯỜI LÁI ĐÒ THẦM LẶNG CỦA NHỮNG GIẤC MƠ SINH VIÊN FPT BTEC TP. HCM Tháng Mười Một 21, 2025
Cô Phan Hoàng Yến hiện đang là giảng viên ngành Quản trị Kinh doanh tại FPT BTEC HCM, với hơn 10 năm kinh nghiệm quốc tế trong các lĩnh vực giảng dạy, phân tích kinh doanh, vận hành, marketing và ...
ALUMNI HOMECOMING 2025 – GOLDEN REUNION: HÀNH TRÌNH TRỞ LẠI ĐẦY TỰ HÀO CỦA CÁC THẾ HỆ CỰU SINH VIÊN FPT BTEC Tháng Mười Một 18, 2025
Tối ngày 15/11, sự kiện Alumni Homecoming 2025 – Golden Reunion đã diễn ra trong không khí ấm cúng và tràn đầy cảm xúc tại FPT BTEC HCM. Đây không chỉ là ngày gặp gỡ của các thế hệ cựu ...
SINH VIÊN FPT BTEC GHI DẤU TẠI EDUCAMP 2025 VỚI NHỮNG DỰ ÁN “CHẠM ĐƯỢC - DÙNG ĐƯỢC” Tháng Mười Một 18, 2025
Một buổi tối trong phòng học khi những dòng code vẫn miệt mài chạy, mô hình vẫn đang huấn luyện và ánh sáng từ chiếc kính VR vẫn lấp lóe, tại FPT BTEC, “đồ án tốt nghiệp” không chỉ là ...
BIG OFFLINE CLB FPT BTEC: THE ESSENCE VOYAGE – HÀNH TRÌNH SẮC MÀU KẾT NỐI BẢN SẮC SINH VIÊN Tháng Mười Một 10, 2025
Vừa qua, Phòng CTSV FPT BTEC HCM đã tổ chức thành công Big Offline CLB – The Essence Voyage, chương trình giao lưu và kết nối toàn thể các Câu lạc bộ sinh viên tại trường. Sự kiện có sự ...

Nhập học liền tay

Nhận ngay học bổng lên tới 70% học phí

  • Đồng ý để dữ liệu cá nhân của Anh/Chị được thu thập trên trang này, được xử lý và lưu trữ bởi FPT BTEC - Trường Cao đẳng FPT Polytechnic (đơn vị thành viên của Công ty TNHH Giáo dục FPT hay còn gọi là Tổ chức giáo dục FPT) cho mục đích và theo điều kiện đã được công bộ tại Quy định bảo vệ dữ liệu cá nhân của Tổ chức giáo dục FPT tại đây.