100 bài tập đạo hàm mới nhất

Tháng Một 9, 2024

100 bài tập đạo hàm mới nhất

100 bài tập đạo hàm mới nhất

Đạo hàm là phần kiến thức trọng tâm và không thể thiếu trong đề thi THPT Quốc Gia hàng năm. Để các bạn học sinh có sự ôn luyện và chuẩn bị tốt nhất, BTEC FPT đã tổng hợp lại các quy tắc tính đạo hàm và 100 bài tập đạo hàm bao gồm các bài tập đạo hàm từ cơ bản đến nâng cao có kèm hướng dẫn giải. Các bạn hãy tham khảo trong bài viết dưới đây nhé! 

Các dạng bài tập đạo hàm

Các dạng bài tập đạo hàm

Các dạng bài tập đạo hàm

Dạng 1: Tính đạo hàm bằng định nghĩa

Cho hàm số y = f(x). Hãy tính đạo hàm của hàm số f(x) bằng định nghĩa đạo hàm.

Bước 1: Với Δx là số gia của số đối tại x0 ,tính Δy = f(x0 + Δx) - f(x0);

Bước 2. Lập tỉ số: Δy/Δx;

Bước 3. Tính limΔx->0 Δy/Δx

Nhận xét: nếu thay x0 bởi x ta có định nghĩa và quy tắc tính đạo hàm của hàm số y=f(x) tại điểm x∈(a;b).

👉 Xem thêm: Đề thi THPT Quốc Gia 2024 Môn Toán mới nhất
👉 Xem thêm: Bộ 20 đề thi thử THPT quốc gia 2024 môn toán (Có Lời Giải)
👉 Xem thêm: Tài liệu ôn thi THPT quốc gia 2024 môn toán
👉 Xem thêm: Bộ đề thi tham khảo THPT quốc gia 2024 môn toán
👉 Xem thêm: Cấu trúc đề thi thpt quốc gia môn toán 2024
👉 Xem thêm: Tổng hợp công thức toán thi thpt quốc gia mới nhất  

Dạng 2: Đạo hàm của đa thức - Hữu tỉ - Căn thức

Dạng này thường có các yêu cầu sau: 

  • Tính đạo hàm của hàm số y = mx + n.
  • Tính đạo hàm của hàm số y = ax/b.
  • Tính đạo hàm của hàm số y = √x.

Dạng này cần nhớ và áp dụng những công thức sau:

Công thức đạo hàm của đa thức hữu tỉm căn thức

Công thức đạo hàm của đa thức hữu tỉm căn thức

Dạng 3: Tính đạo hàm của hàm số lượng giác

Dạng bài này cần áp dụng những công thức sau:

Công thức tính đạo hàm của hàm số lượng giác

Công thức tính đạo hàm của hàm số lượng giác

Dạng 4: Tìm đạo hàm của hàm số

Dạng này thường có những yêu cầu sau: 

  • Cho hàm số y = f(x) có dạng tổng, hiệu, tích, thương của các hàm số đơn giản. Hãy tìm đạo hàm của hàm số f(x).
  • Cho hàm số y = f(x) có dạng lượng giác. Hãy tìm đạo hàm của hàm số f(x).

Dạng 5: Bài toán chứng minh, giải phương trình, bất phương trình

Dạng này thường có những yêu cầu sau: 

  • Cho hàm số y = f(x). Chứng minh rằng hàm số f(x) có đạo hàm tại mọi điểm trong miền xác định của nó.
  • Cho hàm số y = f(x). Giải phương trình y' = 0.
  • Cho hàm số y = f(x). Giải bất phương trình y' > 0.

Dạng 6: Bài tập đạo hàm vận dụng, vận dụng cao

Dạng này thường có những yêu cầu sau: 

  • Viết phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm (a, f(a)).
  • Tìm điểm cực trị của hàm số y = f(x).
  • Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = f(x) trên một đoạn.

Giữ chỉ tiêu sớm

Nhận ngay học bổng lên tới 70% học phí

  • Đồng ý để dữ liệu cá nhân của Anh/Chị được thu thập trên trang này, được xử lý và lưu trữ bởi FPT BTEC - Trường Cao đẳng FPT Polytechnic (đơn vị thành viên của Công ty TNHH Giáo dục FPT hay còn gọi là Tổ chức giáo dục FPT) cho mục đích và theo điều kiện đã được công bộ tại Quy định bảo vệ dữ liệu cá nhân của Tổ chức giáo dục FPT tại đây.

Ví dụ bài tập đạo hàm

Ví dụ 1: Tính đạo hàm của các hàm số tại các điểm x0 sau:

  1. a) y = 7 + x –x 2, với x0 = 1
  2. b) y = 3x2 – 4x + 9, với x0 = 1 

Hướng dẫn giải: 

a) y = 7 + x – x2

Ta có: y' = 1 – 2x

Vậy y'(1) = 1 – 2. 1 = –1.

b) y = 3x2 – 4x + 9

Ta có: y' = 6x – 4

Vậy y'(1) = 6.1 – 4 = 2.

Ví dụ 2: Tính các đạo hàm của các hàm số sau:

a) y = –x3 + 3x + 1

b) y = (2x – 3)(x5 – 2x)

Hướng dẫn giải:

  1. a) y’ = (–x3 + 3x + 1)’ = –3x2 + 3
  2. b) y = (2x – 3)(x5 – 2x).

y’ = [(2x – 3)(x5 – 2x)]’

= (2x – 3)’.(x5 – 2x) + (x5 – 2x)’.(2x – 3)

= 2(x5 – 2x) + (5x4 – 2)(2x – 3)

= 12x5 – 15x4 – 8x + 6. 

Ví dụ 3: Tính đạo hàm các hàm số sau tại các điểm tương ứng:

Bài tập tính đạo hàm các hàm số sau tại các điểm tương ứng

Bài tập tính đạo hàm các hàm số sau tại các điểm tương ứng

Hướng dẫn giải: 

Hướng dẫn giải tính đạo hàm các hàm số sau tại các điểm tương ứng

Hướng dẫn giải tính đạo hàm các hàm số sau tại các điểm tương ứng

👉 Xem thêm: 100 bài tập lũy thừa lớp 12
👉 Xem thêm: 100 bài tập hàm số mũ và logarit
👉 Xem thêm: 100 bài tập nguyên hàm
👉 Xem thêm: 100 bài tập tích phân
👉 Xem thêm: 100 bài tập số phức
👉 Xem thêm: 100 bài tập khối đa diện
👉 Xem thêm: 100 bài tập hình học không gian 11
👉 Xem thêm: 100 bài tập xác suất lớp 11
👉 Xem thêm: 100 bài tập cấp số nhân
👉 Xem thêm: 100 bài tập cấp số cộng 

Banner TNNN2 1

Danh sách bài tập đạo hàm

Bài tập 1: Cho hàm số y = x3 – 6x2 + 7x + 5 (C), trên (C) những điểm có hệ số góc tiếp tuyến tại điểm nào bằng 2?

A. (–1; –9); (3; –1)

B. (1; 7); (3; –1)

C. (1; 7); (–3; –97)

D. (1; 7); (–1; –9) 

Bài tập 2: Tìm hệ số góc của tiếp tuyến với đồ thị y = tanx tại điểm có hoành độ: x=π/4

A. k = 1 B. k = 1/2 C. k =√2/2    D. 2

Bài tập 3: Cho đường cong (C): y = x2. Phương trình tiếp tuyến của (C) tại điểm M(–1; 1) là:

  1. y = –2x + 1 B. y = 2x + 1 C. y = –2x – 1 D. y = 2x – 1 

Bài tập 4: Cho hàm số y=(x2+x)/(x-2)  . Phương trình tiếp tuyến tại A(1; –2) là:

  1. y = –4(x–1) – 2 B. y = –5(x–1) + 2 C. y = –5(x–1) – 2 D. y = –3(x–1) – 2  

Bài tập 5: Cho hàm số y =  1/3x3 – 3x2 + 7x + 2. Phương trình tiếp tuyến tại A(0; 2) là:

  1. y = 7x +2 B. y = 7x – 2 C. y = –7x + 2 D. y = –7x –2 

Bài tập 6: Cho hàm số y = x3 – 3x2 – 9x – 5. Phương trình y = 0 có nghiệm là:

  1. {–1; 2} B. {–1; 3} C. {0; 4} D. {1; 2} 

Bài tập 7: Cho hàm số f(x) xác định trên R bởi f(x) = 2x2 + 1. Giá trị f(–1) bằng:

  1. 2 B. 6 C. –6 D. 3

Bài tập 8: Cho hàm số f(x) xác định trên R bởi f(x)=3√x  .Giá trị f(–8) bằng:

  1. 1/12 B. – 1/12 C.  1/6 D. – 1/6

Bài tập 9: Cho hàm số (C): y = 2x3 -2x + 1

  1. a) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm I(1, –2).
  2. b) Chứng minh rằng các tiếp tuyến khác của đồ thị (C) không đi qua I

Tham khảo thêm bài tập đạo hàm tại: 

Danh sách bài tập đạo hàm với btec fpt

Danh sách bài tập đạo hàm với btec fpt

Trên đây là các dạng bài tập có kèm ví dụ và danh sách các bài tập đạo hàm trọng tâm cho các bạn học sinh luyện tập. Hy vọng với bài viết trên các bạn sẽ có thêm kiến thức hữu ích để giải các dạng bài tập về đạo hàm. Chúc bạn đạt kết quả tốt trong kỳ thi sắp tới!

 

btec BTEC FPT

Tin tức mới nhất

Xem tất cả
CÂU CHUYỆN TRUYỀN CẢM HỨNG CỦA NHỮNG SINH VIÊN ƯU TÚ CỦA BTEC FPT Tháng Một 6, 2026
Người ta thường nói: 'Nỗ lực thôi chưa đủ, quan trọng là bạn đặt nỗ lực ấy vào đâu'. Giữa hàng trăm ngã rẽ vào đời, tại sao một Quán quân công nghệ Châu Âu, một Á vương điện ảnh ...
ĐỐI ĐẦU TỘI PHẠM CÔNG NGHỆ CAO: SINH VIÊN BTEC FPT VÀ LỜI GIẢI CHO BÀI TOÁN AN NINH MẠNG Tháng Mười Hai 27, 2025
Biến nỗi lo về Deepfake, tin tặc và lừa đảo trực tuyến thành động lực sáng tạo, sinh viên BTEC FPT đã trình làng loạt đồ án Cyber Security đầy tính thực tiễn. Đây là lời khẳng định đanh thép ...
SINH VIÊN BTEC FPT ĐÀ NẴNG THỬ THÁCH TINH THẦN THỦ LĨNH TỪ NHỮNG TRẢI NGHIỆM “SINH TỒN” Tháng Mười Hai 24, 2025
Chương trình "Leadership 2025 - Chapter II: Lead by Experience" tại BTEC FPT Đà Nẵng đã được triển khai không phải như một khóa học, mà như một hành trình trải nghiệm thực tế đầy thách thức dành riêng cho ...
"CREATIVE'S DAY": KHÔNG CÒN LÀ BÀI TẬP GIẢ LẬP, ĐỒ ÁN SINH VIÊN ĐƯỢC DOANH NGHIỆP "CHỐT ĐƠN’ NGAY TẠI CHỖ Tháng Mười Hai 24, 2025
Không gói gọn trong khuôn khổ lý thuyết, buổi bảo vệ dự án môn Advanced Graphic Design Studies vừa qua đã trở thành một "sàn diễn" thực thụ. Tại đây, sinh viên Thiết kế Đồ họa BTEC FPT Đà Nẵng ...
SINH VIÊN BTEC “MỤC SỞ THỊ” DÂY CHUYỀN SẢN XUẤT BAO BÌ: HÀNH TRÌNH TỪ BẢN VẼ ĐẾN TAY NGƯỜI TIÊU DÙNG TẠI DU MỤC ART Tháng Mười Hai 23, 2025
Một bản thiết kế đẹp trên màn hình máy tính chưa chắc đã là một sản phẩm tốt khi ra xưởng in. Chân lý nghề nghiệp này đã được sinh viên K7 chuyên ngành Thiết kế Đồ họa BTEC FPT ...

Nhập học liền tay

Nhận ngay học bổng lên tới 70% học phí

  • Đồng ý để dữ liệu cá nhân của Anh/Chị được thu thập trên trang này, được xử lý và lưu trữ bởi FPT BTEC - Trường Cao đẳng FPT Polytechnic (đơn vị thành viên của Công ty TNHH Giáo dục FPT hay còn gọi là Tổ chức giáo dục FPT) cho mục đích và theo điều kiện đã được công bộ tại Quy định bảo vệ dữ liệu cá nhân của Tổ chức giáo dục FPT tại đây.