100 bài tập cấp số nhân mới nhất

Tháng Một 18, 2024

100 bài tập cấp số nhân mới nhất

100 bài tập cấp số nhân mới nhất

Cấp số cộng và cấp số nhân là chuyên đề thường xuyên xuất hiện trong đề thi THPT Quốc Gia hàng năm. Vì vậy việc luyện tập giải các bài tập về cấp số nhân và cấp số cộng là vô cùng quan trọng. Trong bài viết dưới đây, BTEC FPT đã tổng hợp lại các dạng bài tập cấp số nhân trọng tâm cho các bạn học sinh ôn tập. 

Các dạng bài tập cấp số nhân

Các dạng bài tập cấp số nhân

Các dạng bài tập cấp số nhân

Dạng 1: Xác định cấp số nhân

Phương pháp giải: 

Bước 1: Xác định số hạng đầu (u1) và công bội (q) của cấp số nhân

Phương pháp 1: Áp dụng công thức định nghĩa cấp số nhân: Un= U1.qn-1 (n>=2)

Trong đó:

  • Un là số hạng thứ n của cấp số nhân
  • U1 là số hạng đầu của cấp số nhân
  • q là công bội của cấp số nhân

Phương pháp 2: Xét tính chất của cấp số nhân:

Cấp số nhân có một số tính chất cơ bản sau:

  • Số hạng thứ 2 bằng tích của số hạng đầu và công bội.
  • Số hạng thứ n bằng tích của số hạng thứ (n - 1) và công bội.

Bước 2: Kiểm tra tính đồng nhất của cấp số nhân

  • Nếu hai số hạng liên tiếp của cấp số nhân đều nhân với nhau bằng công bội, thì đó là cấp số nhân và ngược lại.

👉 Xem thêm: Đề thi THPT Quốc Gia 2024 Môn Toán mới nhất
👉 Xem thêm: Bộ 20 đề thi thử THPT quốc gia 2024 môn toán (Có Lời Giải)
👉 Xem thêm: Tài liệu ôn thi THPT quốc gia 2024 môn toán
👉 Xem thêm: Bộ đề thi tham khảo THPT quốc gia 2024 môn toán
👉 Xem thêm: Cấu trúc đề thi thpt quốc gia môn toán 2024
👉 Xem thêm: Tổng hợp công thức toán thi thpt quốc gia mới nhất  

Dạng 2: Tìm công thức của cấp số nhân

Phương pháp giải: 

Bước 1: Xác định số hạng đầu (u1) và công bội (q) của cấp số nhân theo định nghĩa hoặc tính chất 

Bước 2: Lập công thức tổng quát

Công thức tổng quát của cấp số nhân như sau: Un=U1.qn-1 (n>=2) 

Trong đó:

  • Un là số hạng thứ n của cấp số nhân
  • U1 là số hạng đầu của cấp số nhân
  • q là công bội của cấp số nhân

Thay các giá trị của U1 và q vào công thức tổng quát để tìm công thức của cấp số nhân.

Dạng 3. Tìm điều kiện để dãy số lập thành cấp số nhân. Chứng minh cấp số nhân.

Điều kiện: 

Định nghĩa: Dãy số (Un) là cấp số nhân với công bội q nếu Un+1=Un.q với mọi n ≥ 1.

Điều kiện cần: Nếu (Un) là cấp số nhân thì Un+1=Un.q với mọi n ≥ 1.

Điều kiện đủ: Nếu Un+1=Un.q với mọi n ≥ 1 thì (Un) là cấp số nhân.

Chứng minh:

Cách 1. Chứng minh ∀n ≥ 1;  Un+1=Un.q trong đó q là một số không đổi.

Cách 2. Nếu Un ≠ 0 với mọi n thì ta lập tỉ số: T = Un+1/Un

T là hằng số thì (Un) là cấp số nhân có công bội q = T.

T phụ thuộc vào n thì (Un) không là cấp số nhân.

Dạng 4: Tìm hạng tử trong cấp số nhân

Phương pháp giải: 

Bước 1: Xác định số hạng đầu (U1) và công bội (q) của cấp số nhân theo định nghĩa hoặc tính chất. 

Bước 2: Tìm công thức của cấp số nhân

Công thức tổng quát của cấp số nhân như sau: Un=U1.qn-1 (n>=2) 

Trong đó:

  • Un là số hạng thứ n của cấp số nhân
  • U1 là số hạng đầu của cấp số nhân
  • q là công bội của cấp số nhân

Thay các giá trị của U1 và q vào công thức tổng quát để tìm công thức của cấp số nhân.

Bước 3: Tính hạng tử của cấp số nhân

  • Hạng tử của cấp số nhân là giá trị của số hạng n của cấp số nhân.
  • Ta thay n bằng giá trị của hạng tử vào công thức của cấp số nhân để tìm hạng tử của cấp số nhân.

Dạng 5: Tính tổng của cấp số nhân

Phương pháp giải: 

Bước 1: Xác định số hạng đầu (u1) và công bội (q) của cấp số nhân theo định nghĩa hoặc tính chất 

Bước 2: Xác định số số hạng (n) của cấp số nhân

Bước 3: Áp dụng công thức tính tổng của cấp số nhân

Công thức tính tổng của cấp số nhân như sau: Sn=(U1.(qn-1))/(q-1), q1

Trong đó:

Sn là tổng của cấp số nhân

U1 là số hạng đầu của cấp số nhân

q là công bội của cấp số nhân

👉 Xem thêm: 100 bài tập đạo hàm
👉 Xem thêm: 100 bài tập lũy thừa lớp 12
👉 Xem thêm: 100 bài tập hàm số mũ và logarit
👉 Xem thêm: 100 bài tập nguyên hàm
👉 Xem thêm: 100 bài tập tích phân
👉 Xem thêm: 100 bài tập số phức
👉 Xem thêm: 100 bài tập khối đa diện
👉 Xem thêm: 100 bài tập hình học không gian 11
👉 Xem thêm: 100 bài tập xác suất lớp 11
👉 Xem thêm: 100 bài tập cấp số cộng 

Dạng 6: Bài toán thực tế

Phương pháp giải: 

Bước 1: Xác định dạng toán

Ta cần xác định xem bài toán thuộc dạng toán nào trong các dạng toán sau:

  • Tính tổng các số hạng của cấp số nhân
  • Tính tổng các số hạng lẻ của cấp số nhân
  • Tính tổng các số hạng chẵn của cấp số nhân
  • Tính tổng các số hạng có giá trị lớn hơn hoặc bằng một số cho trước của cấp số nhân
  • Tính tổng các số hạng có giá trị nhỏ hơn hoặc bằng một số cho trước của cấp số nhân

Bước 2: Mô hình hóa bài toán

Ta cần mô hình hóa bài toán thực tế thành một bài toán cấp số nhân. Để làm được điều này, ta cần xác định các yếu tố sau:

  • Số hạng đầu (u1) của cấp số nhân
  • Công sai (d) của cấp số nhân
  • Số số hạng (n) của cấp số nhân

Bước 3: Giải bài toán cấp số nhân

Ta sử dụng các công thức và tính chất của cấp số nhân để giải bài toán cấp số nhân đã mô hình hóa ở bước 2.

Banner TNNN2 1

Ví dụ bài tập cấp số nhân

Ví dụ 1: Cho cấp số nhân có số hạng thứ 4 là 8 và số hạng thứ 7 là 256. Hãy xác định số hạng đầu và công bội của cấp số nhân đó.

Hướng dẫn giải: 

Theo công thức định nghĩa, ta có:

U4=U1.q3=8

U7=U1.q6=256

Từ hai phương trình trên, ta được hệ phương trình sau:

U1.q3=8

U1.q6=256

Giải hệ phương trình trên, ta được:

U1 = 2

q = 2

Vậy, cấp số nhân đó có số hạng đầu là 2 và công bội là 2.

Ví dụ 2: Cho cấp số nhân có tổng của ba số hạng đầu là 24 và tổng của hai số hạng cuối là 512. Hãy xác định số hạng đầu và công bội của cấp số nhân đó.

Hướng dẫn giải: 

Theo công thức định nghĩa, ta có:

U2=U1.q=24

U6=U1.q5=512

Giải hệ phương trình trên, ta được:

U1 = 2

q = 4

Vậy, cấp số nhân đó có số hạng đầu là 2 và công bội là 4.

Ví dụ 3: Cho cấp số nhân có số hạng đầu là 2 và công bội là 3. Hãy tìm công thức của cấp số nhân đó.

Ta có:

U1 = 2

q = 3

Thay vào công thức ta được:

Un=U1.q(n-1)

Un=2.3n-1

Vậy, công thức cấp số nhân đó là:

Un=2.3n-1

Ví dụ 4: Cho cấp số nhân có số hạng đầu là 2 và công bội là 3. Hãy tìm hạng tử thứ 5 của cấp số nhân đó.

Ta có:

U1 = 2

q = 3

Thay vào công thức, ta được: 

Un=U1.q(n-1)

U5 = 72

Vậy, hạng tử thứ 5 của cấp số nhân đó là 72.

Ví dụ 5: Một người đi xe đạp từ nhà đến trường. Mỗi ngày, người đó đi thêm 2 km so với ngày hôm trước. Biết rằng sau 10 ngày, người đó đi được 30 km. Tính tổng quãng đường mà người đó đi được trong 20 ngày.

Bước 1: Xác định dạng toán

Đây là bài toán tính tổng các số hạng của cấp số nhân.

Bước 2: Mô hình hóa bài toán

Ta có:

  • Số hạng đầu (u1) của cấp số nhân là 2 km
  • Công sai (d) của cấp số nhân là 2 km
  • Số số hạng (n) của cấp số nhân là 10 ngày

Bước 3: Giải bài toán cấp số nhân

Sn=(U1(qn-1)) / (q-1)

S10 = 512

Vậy, tổng quãng đường mà người đó đi được trong 10 ngày là 512 km.

Tham khảo danh sách 100 bài tập cấp số cộng và cấp số nhân tại: 

cac-dang-toan-day-so-cap-so-cong-va-cap-so-nhan-toan-11-canh-dieu.pdf

chuyen-de-day-so-cap-so-cong-va-cap-so-nhan-toan-11-knttvcs (1).pdf

chuyen-de-day-so-cap-so-cong-va-cap-so-nhan-toan-11-knttvcs.pdf

huong-dan-giai-cac-dang-toan-day-so-cap-so-cong-va-cap-so-nhan.pdf

tai-lieu-chu-de-cap-so-cong.pdf

Ví dụ bài tập cấp số nhân với btec fpt

Ví dụ bài tập cấp số nhân với btec fpt

Trên đây là 6 dạng bài tập trọng tâm trong chuyên đề cấp số nhân kèm danh sách bài tập tham khảo được chúng mình tổng hợp lại. Hy vọng đây sẽ là bộ tài liệu hữu ích giúp các bạn học sinh đạt điểm cao trong kỳ thi sắp tới. 

btec BTEC FPT

Tin tức mới nhất

Xem tất cả
TRẦN HOÀNG NHI: TỪ “CÚ RẼ NGANG” NGÀNH KIẾN TRÚC ĐẾN HÀNH TRÌNH KHỞI NGHIỆP TỰ DO TẠI QUÊ NHÀ Tháng Hai 4, 2026
Dám từ bỏ khi nhận ra mình đi sai hướng, dám trở về khi bạn bè đồng lứa chọn ở lại thành phố lớn . Trần Hoàng Nhi (biệt danh Thỏ) là minh chứng cho một thế hệ Gen Z ...
RỜI THAO TRƯỜNG, VÀO PHÒNG LAB: CÂU CHUYỆN TRUYỀN CẢM HỨNG CỦA CHÀNG LÍNH NGÀNH CÔNG NGHỆ Tháng Một 31, 2026
Có những hành trình trưởng thành bắt đầu từ những tháng ngày rèn luyện trong quân ngũ. Có những khát vọng tri thức được thắp sáng ngay khi người lính cởi bỏ bộ quân phục để khoác lên mình màu ...
SINH VIÊN FPT BTEC HỌC HỎI BÍ QUYẾT NGHỀ NGHIỆP, BẮT KỊP XU HƯỚNG TUYỂN DỤNG TỪ CÁC CHUYÊN GIA UY TÍN Tháng Một 30, 2026
Ngày 28/08/2025, tại Cao đẳng Anh Quốc FPT BTEC Đà Nẵng, Workshop “Hành Trình Xây Tương Lai” đã diễn ra với sự tham gia của đông đảo các bạn sinh viên và nhiều chuyên gia nhân sự đến từ FPT ...
HÀNH TRÌNH CHẠM ĐỈNH VINH QUANG CỦA NÔNG AN - QUÁN QUÂN CHÂN TRẦN KHỞI NGHIỆP MÙA 2 “AI & STARTUP - BỆ PHÓNG THẾ HỆ TRẺ” Tháng Một 29, 2026
Cuộc thi Chân Trần Khởi Nghiệp mùa 2 “AI & Startup - Bệ phóng thế hệ trẻ” đã chính thức khép lại, nhưng cái tên Nông An vẫn tiếp tục được nhắc đến với sự ngưỡng mộ. Họ không chỉ ...
Bộ Giáo dục dự kiến bỏ xét riêng học bạ; giảm 1,5 điểm cộng IELTS Tháng Một 28, 2026
Thí sinh xét học bạ phải đạt sàn về điểm thi tốt nghiệp, điểm cộng IELTS chỉ còn tối đa 1,5, giảm một nửa so với trước, theo dự kiến của Bộ Giáo dục. Nội dung nằm trong dự thảo ...
"NHÀ MÌNH DZUI TẾT 2026": CHUYẾN XE THỜI GIAN ĐƯA SINH VIÊN BTEC FPT VỀ VỚI TẾT XƯA Tháng Một 28, 2026
Đi hội không chỉ để chơi, mà còn để mang “giá trị”' về nhà. Tại sao Lễ Hội Xuân 2026 của BTEC FPT TP.HCM lại khiến hàng trăm sinh viên phải lưu luyến đến thế? Bí mật nằm ở hành ...

Nhập học liền tay

Nhận ngay học bổng lên tới 70% học phí

  • Đồng ý để dữ liệu cá nhân của Anh/Chị được thu thập trên trang này, được xử lý và lưu trữ bởi FPT BTEC - Trường Cao đẳng FPT Polytechnic (đơn vị thành viên của Công ty TNHH Giáo dục FPT hay còn gọi là Tổ chức giáo dục FPT) cho mục đích và theo điều kiện đã được công bộ tại Quy định bảo vệ dữ liệu cá nhân của Tổ chức giáo dục FPT tại đây.