Bảng công thức đạo hàm lớp 12 đầy đủ, chi tiết

Tháng Hai 24, 2024

Bảng công thức đạo hàm lớp 12 đầy đủ, chi tiết

Bảng công thức đạo hàm lớp 12 đầy đủ, chi tiết

Đạo hàm là phần kiến thức quan trọng trong chương trình giải tích lớp 12, và thường xuyên xuất hiện trong đề thi THPT Quốc gia. Do đó, các bạn học sinh cần nắm vững kiến thức về cách tính đạo hàm lớp 12 để có thể đạt điểm số cao trong kỳ thi quan trọng này. Trong bài viết dưới đây, chúng mình đã tổng hợp lại công thức tính đạo hàm và bảng đạo hàm cho các bạn tham khảo. 

Bảng công thức đạo hàm lớp 12

Bảng công thức đạo hàm lớp 12

Đạo hàm là gì 

1. Định nghĩa

Theo toán học giải tích, đạo hàm là 1 hàm số, là đại lượng dùng để mô tả sự biến thiên tại 1 điểm của hàm số. Nói cách khác, đây chính là tỉ số giữa số gia và hàm số tại một điểm x0. Trong đó, chiều biến thiên và độ lớn của biến thiên thể hiện giá trị của đạo hàm. 

Hàm số y = f(x) ký hiệu bằng y′(x0) hoặc f′(x0) được xác định trên khoảng (a;b) và x0 ∈ (a;b)

Đạo hàm của hàm số f(x) tại x0 là giới hạn hữu hạn của tỉ số giữa số gia của đối số và số gia của hàm số. 

f'(xo)=x0[f(xo+x)]-f(xo)x 

Cách tính đạo hàm:

Bước 1: Giả sử Δx là số gia của đối số x tại x0.

Bước 2: Tính Δy = f(x0 +Δx)−f(x0).

Bước 3: Thay Δx và Δy vào biểu thức f(xo+x)-f(xo)x

Bước 4: Tính giới hạn của biểu thức trên khi Δx tiến dần về 0. 

Ví dụ: Tính đạo hàm của hàm số f(x)=x2  tại điểm x0=2.

Hướng dẫn giải: 

Bước 1: Giả sử Δx là số gia của đối số x tại x0 =2.

Bước 2: Tính Δy = f(x0 +Δx)−f(x0): 

Δy=(2+Δx)2 −22 =4+4Δx+(Δx)2 −4=4Δx+(Δx)2

Bước 3: Thay Δx và Δy vào biểu thức  f(xo+x)-f(xo)x

 f(xo+x)-f(xo)x4Δx+(Δx)2x = 4+Δx

Bước 4: Tính giới hạn của biểu thức trên khi Δx tiến dần về 0. 

x04+Δx=4

Vậy, đạo hàm của hàm số

f(x) = x2 tại điểm x0 = 2 là f(2)=4.

2. Tính chất

  • Đạo hàm của hàm số liên tục tại một điểm bằng đạo hàm của nó tại điểm đó.
  • Đạo hàm của hàm số hằng số bằng 0. 
  • Đạo hàm của hàm số mũ ex  bằng chính nó.
  • Đạo hàm của hàm số logarit ln(x) bằng 1/x
  • Đạo hàm của tổng hai hàm số bằng tổng đạo hàm của hai hàm số đó.
  • Đạo hàm của hiệu hai hàm số bằng hiệu đạo hàm của hai hàm số đó.
  • Đạo hàm của tích hai hàm số được tính theo quy tắc: f(x)=u’(x)v(x)+u(x)v’(x)
  • Đạo hàm của thương hai hàm số được tính theo quy tắc: f(x)​=u’(x)v(x)+u(x)v’(x)/v(x)2

Giữ chỉ tiêu sớm

Nhận ngay học bổng lên tới 70% học phí

3. Mối quan hệ giữa tính liên tục và sự tồn tại của đạo hàm

Định lý: Nếu hàm số f(x) có đạo hàm tại điểm x0 thì nó cũng liên tục tại điểm đó.

Chứng minh:

Giả sử f(x) có đạo hàm tại x0. Khi đó, f'(xo)=x0[f(xo+x)]-f(xo)x

Suy ra: x0[f(xo+x)-f(xo)] = 0

Điều này có nghĩa là: x0[f(xo+x)] = f(xo)

Vậy, f(x) liên tục tại x0.

Nghịch đảo: Tuy nhiên, điều ngược lại không đúng. Một hàm số liên tục tại một điểm không nhất thiết phải có đạo hàm tại điểm đó.

Các công thức đạo hàm lớp 12

Bảng đạo hàm là bảng tổng hợp các đạo hàm của các hàm số cơ bản. Bảng đạo hàm giúp các bạn học sinh dễ dàng tra cứu đạo hàm của các hàm số một cách nhanh chóng và dễ dàng.

Để giúp các bạn học sinh nắm được các công thức đạo hàm quan trọng, BTEC FPT đã tổng hợp lại các bảng đạo hàm tổng quan, sơ cấp, cấp cao và lượng giác ở phía dưới đây: 

Công thức đạo hàm tổng quan

Công thức tổng quan bao gồm 3 dạng: 

  • Đạo hàm của f(u) với u là hàm số
  • Đạo hàm của f(x) với x là biến số 
  • đạo hàm của một số phân thức hữu tỉ.
Công thức đạo hàm tổng quan

Công thức đạo hàm tổng quan

Công thức đạo hàm sơ cấp

Công thức đạo hàm sơ cấp

Công thức đạo hàm sơ cấp

Công thức đạo hàm cấp cao

Công thức đạo hàm cấp cap

Công thức đạo hàm cấp cap

Công thức đạo hàm lượng giác

Công thức đạo hàm lượng giác

Công thức đạo hàm lượng giác

Kinh nghiệm khi làm bài tập đạo hàm lớp 12

Muốn học tốt đạo hàm lớp 12 trước tiên các bạn cần nắm chắc lý thuyết đạo hàm lớp 12 bao gồm khái niệm, tính chất, công thức đạo hàm để có thể áp dụng vào giải bài tập. Để ghi nhớ kiến thức nhanh chóng và hiệu quả các bạn học sinh có thể sử dụng công cụ sơ đồ tư duy. 

Các bạn học sinh nên làm nhiều dạng bài tập khác nhau, bao gồm cả bài tập trắc nghiệm và bài tập tự luận có mức độ từ dễ đến khó. Việc luyện tập thường xuyên giúp các bạn làm quen với các dạng câu hỏi và phương pháp giải, từ đó nâng cao kỹ năng và điểm số. 

Các bạn học sinh nên chú ý chọn những nguồn tài liệu tham khảo uy tín, bám sát đề thi THPT Quốc Gia. Có rất nhiều nguồn tài liệu uy tín các bạn có thể tham khảo để luyện giải bài tập như sách giáo khoa, sách bài tập và các loại sách tham khảo được xuất bản bởi Bộ giáo dục và đào tạo, Đại học Quốc Gia Hà Nội,…

Ngoài ra các bạn học sinh có thể sử dụng các công cụ hỗ trợ tính đạo hàm online như: 

  • banhoituidap.com: website cung cấp lời giải chi tiết kèm đồ thị mô tả hàm số đạo hàm.
  • mathpapa.com: mathapapa.com hỗ trợ người dùng tính đạo hàm online nhanh chóng và chính xác, hiển thị chi tiết bước giải, thao tác sử dụng đơn giản, website được nhiều học sinh sử dụng.
  • wolfamalpha.com: Sử dụng website wolfamalpha.com giúp học sinh giải chính xác hầu hết các dạng bài tập tính đạo hàm. 
  • Mathway: Mathway là website cung cấp công cụ tính toán online trong đó có đạo hàm. 
  • symbolab.com: Đây là website quen thuộc với nhiều người dùng, giải đáp hầu hết các bài toán liên quan đến đạo hàm, cung cấp các bước giải cụ thể, đồ thị và tải xuống file bài giải dạng PDF đầy đủ.
Kinh nghiệm khi làm bài tập đạo hàm lớp 12

Kinh nghiệm khi làm bài tập đạo hàm lớp 12

Hy vọng với những kinh nghiệm mà chúng mình đã chia sẻ trên đây sẽ giúp các bạn học sinh có quá trình học tập và ôn thi hiệu quả. BTEC FPT chúc bạn thành công trên con đường học tập. 

btec BTEC FPT

Tin tức mới nhất

Xem tất cả
Có việc làm xịn khi chưa tốt nghiệp: Bí quyết của chàng sinh viên năm 2 BTEC FPT Tháng Sáu 19, 2025
Lý Thái Cường - sinh viên ngành Lập trình máy tính tại Cao đẳng Anh Quốc BTEC FPT cơ sở Cần Thơ - là một trong những gương mặt trẻ tiêu biểu đang “làm mưa làm gió” trong cộng đồng ...
Bản lĩnh BTEC-ers bùng nổ tại Chung kết Cuộc thi BizUp Championship Tháng Sáu 18, 2025
Vòng Chung kết BizUp Championship vừa khép lại trong không khí sôi động và đầy cảm xúc tại BTEC FPT TP.HCM, đánh dấu điểm kết cho hành trình học thuật mang tính thực tiễn và đổi mới. BizUp Championship là ...
Knight Alliance 2025 – MOU & Career Fair: Ngày hội việc làm bùng nổ tại BTEC FPT Đà Nẵng Tháng Sáu 9, 2025
Vừa qua, Ngày hội Knight Alliance 2025 – MOU & Career Fair đã chính thức khép lại với nhiều dấu ấn đáng nhớ. Đây là sự kiện trọng tâm nằm trong chuỗi hoạt động Empower Week – Industry Connect 2025, ...
Trải nghiệm của sinh viên BTEC FPT khi lần đầu tham gia cuộc thi ResFes Tháng Sáu 9, 2025
ResFes là một sân chơi học thuật ý nghĩa do BTEC FPT tổ chức - đã chính thức khép lại, nhưng dư âm của những trải nghiệm lần đầu tham gia vẫn còn nguyên vẹn trong tâm trí các bạn ...
Khởi động kỳ học mới cùng Orientation ngành QTKD SU25 Tháng Sáu 7, 2025
Vừa qua, không khí tại BTEC FPT Hà Nội trở nên sôi động và rộn ràng hơn bao giờ hết với chuỗi chương trình Orientation dành cho sinh viên ngành Quản trị Kinh doanh - kỳ 1, khóa 2025. Đây ...
BTEC FPT rực sáng cùng Electro Design Challenge - Nơi những “bản mạch” viết nên tương lai Tháng Năm 31, 2025
Trong không khí sôi nổi của những ngày hè rực lửa, BTEC FPT TP.HCM đã hân hoan chào đón những tài năng trẻ từ khắp mọi miền đất nước về tham dự Vòng Chung kết Toàn quốc cuộc thi Electro ...

Nhập học liền tay

Nhận ngay học bổng lên tới 70% học phí