Phương trình mũ và cách giải nhanh nhất

Tháng Mười Hai 17, 2024

Phương trình mũ và cách giải nhanh nhất

Phương trình mũ và cách giải nhanh nhất

Trong toán học, phương trình mũ là một trong những chủ đề thú vị và quan trọng, thường gặp trong chương trình học phổ thông. Trong bài viết này, chúng ta sẽ cùng BTEC FPT khám phá lý thuyết cơ bản về phương trình mũ, cũng như các phương pháp giải nhanh nhất để giúp bạn làm bài thi một cách tự tin và chính xác. 

Lý thuyết phương trình mũ

Trước tiên muốn nắm rõ về một dạng bài học mới chúng ta sẽ cần tìm hiểu về ngọn ngành, lý thuyết đầu tiên của dạng bài đó. Tương tự như vậy chúng ta cần biết phương trình mũ là gì và có công thức như thế nào? 

  1. Phương trình mũ cơ bản

Hiểu một cách đơn giản nhất thì phương trình mũ là một dạng phương trình 2 vế trong đó có chứa biểu thức mũ 

Theo như định nghĩa trong chương trình THPT, chúng ta có định nghĩa và dạng tổng quát như sau: 

Phương trình có dạng a^x=b với a,b cho trước và 0<a ≠ 1

Phương trình mũ sẽ có nghiệm khi: 

  • Với b > 0 ⇔  a^x=b => x= logab
  • Với b<,= 0 ⇔ Phương trình mũ sẽ vô nghiệm 

Ví dụ: 6^x=216

 ⇔ x=logx216

⇔  x= 3

  1. Biến đổi, quy về cùng cơ số:

Biến đổi và quy về cùng cơ số là một trong những kỹ thuật quan trọng nhất khi giải phương trình mũ. Bằng cách đưa các số mũ về cùng cơ số, chúng ta có thể so sánh các số mũ và tìm ra nghiệm của phương trình.

Lý thuyết phương trình mũ

Lý thuyết phương trình mũ

Tại sao phải quy về cùng cơ số?

  • Đơn giản hóa: Khi các số mũ có cùng cơ số, việc so sánh và giải phương trình trở nên dễ dàng hơn.
  • Sử dụng tính chất của lũy thừa: Khi các số mũ có cùng cơ số, chúng ta có thể áp dụng các tính chất của lũy thừa để biến đổi phương trình.

af(x) = ag(x) ⇔ a = 1 hoặc 0 < a ≠ 1, f(x) = g(x)

  1. Đặt ẩn phụ

Đặt ẩn phụ là một kỹ thuật thường được sử dụng để giải các phương trình mũ phức tạp, đặc biệt là những phương trình có dạng đặc trưng. Bằng cách đặt một biểu thức chứa ẩn số ban đầu làm ẩn phụ mới, chúng ta có thể đưa phương trình về dạng quen thuộc hơn, dễ giải hơn.

f[ag(x)] = 0 ( 0 < a ≠ 1) ⇔ t = ag(x) > 0 , f(t) = 0

  1. Logarit hóa 

Phương trình af(x) = b <=> 0 < a ≠ 1, b > 0, f(x) = logab

Phương trình af(x) = bg(x) ⇔ logaaf(x) = logabg(x) ⇔ f(x) = g(x).logab

Công thức phương trình mũ 

Để tìm được ra cách giải của phương trình mũ, các bạn cần ghi nhớ các công thức cơ bản của số mũ phục vụ áp dụng trong các bước biến đổi. 

Phương trình mũ cơ bản

Phương trình ax=bax=b có nghiệm duy nhất x=logabx=logab.

Phương trình mũ có dạng a(mx+n)=ba(mx+n)=b

Phương trình này có nghiệm x=logab–nmx=logab–nm.

Phương trình mũ có dạng ax=akax=ak

Phương trình này có nghiệm x = k.

Một số dạng phương trình mũ thường gặp

Phương trình mũ cơ bản

ax=b(a≠1,b>0)ax=b(a≠1,b>0)

Phương trình mũ có dạng:

ax+bx=cax+bx=c

Phương trình mũ có dạng

a(x+m)=a(x+n)a(x+m)=a(x+n)

Logarit của tích

loga(xy)=loga(x)+loga(y)(a>0,a≠1,x>0,y>0)loga(xy)=loga(x)+loga(y)(a>0,a≠1,x>0,y>0)

Logarit của thương

loga(x/y)=loga(x)–loga(y)(a>0,a≠1,x>0,y>0)loga(x/y)=loga(x)–loga(y)(a>0,a≠1,x>0,y>0)

Logarit của lũy thừa

loga(xn)=n.loga(x)loga(xn)=n.loga(x) (a > 0, a ≠ 1, x > 0, n là số nguyên)

Logarit của căn bậc n

loga(√n)=1/n.loga(x)loga(√n)=1/n.loga(x) (a > 0, a ≠ 1, x > 0, n là số nguyên dương)

Đổi cơ số logarit

loga(x)=logb(x)/logb(a)loga(x)=logb(x)/logb(a) (a, b > 0, a ≠ 1, b ≠ 1, x > 0)

Logarit của 1

loga(1)=0loga(1)=0 (a > 0, a ≠ 1)

Logarit của số e

ln(x)=loge(x)(x>0)ln(x)=loge(x)(x>0)

Logarit của số 10

log(x)=log10(x)(x>0)log(x)=log10(x)(x>0)

Hằng số Euler

e≈2,71828

Công thức phương trình mũ

Công thức phương trình mũ

Cách giải phương trình mũ và ví dụ

Dạng 1: Giải phương trình mũ cơ bản:

ax=b(b>0)ax=b(b>0)

Phương pháp:

Lấy logarit hai vế của phương trình theo cùng cơ số.

Giải phương trình logarit thu được.

Ví dụ:

Giải phương trình 2x=82x=8

Lời giải:

Lấy logarit hai vế của phương trình theo cơ số 2, ta được:

log2(2x)=log2(8)log2(2x)=log2(8)

x=log2(8)=3x=log2(8)=3

Vậy nghiệm của phương trình là x = 3.

Dạng 2: Giải phương trình mũ dạng ẩn ở số mũ:

a(f(x)) = b (b>0)

Phương pháp:

Đặt ẩn phụ.

Giải phương trình thu được.

Ví dụ:

Giải phương trình 2(3x–1)=162(3x–1)=16.

Lời giải:

Đặt ẩn phụ t=3x–1t=3x–1, ta được:

2t=16=242t=16=24

t = 4.

3x – 1 = 4.

x=53x=53

Vậy nghiệm của phương trình là x=53x=53

Dạng 3: Giải phương trình mũ dạng tích:

ax+m=an.apax+m=an.ap

Phương pháp:

Chuyển vế và sử dụng tính chất của lũy thừa.

Giải phương trình thu được.

Ví dụ:

Giải phương trình 3x+2=35.323x+2=35.32

Lời giải:

Chuyển vế, ta được:

3(x+2)=3(5+2)3(x+2)=3(5+2)

x + 2 = 7.

x = 5.

Vậy nghiệm của phương trình là x = 5.

Dạng 4: Giải phương trình mũ dạng thương:

ax+m=an/apax+m=an/ap

Phương pháp:

Chuyển vế và sử dụng tính chất của lũy thừa.

Giải phương trình thu được.

Ví dụ:

Giải phương trình 2x–1=23/222x–1=23/22.

Lời giải:

Chuyển vế, ta được:

2x–1=23–22x–1=23–2

x – 1 = 1.

x = 2.

Vậy nghiệm của phương trình là x = 2.

 Với những kiến thức đã được trang bị về hàm số mũ với BTEC FPT các bạn thí sinh hoàn toàn có thể tự tin chinh phục mọi bài toán phương trình mũ. Hãy nhớ rằng, luyện tập thường xuyên là chìa khóa để thành công. Đừng ngần ngại chia sẻ bài viết này với bạn bè của bạn và cùng nhau khám phá thêm nhiều điều thú vị về thế giới toán học nhé!

 

btec BTEC FPT

Tin tức mới nhất

Xem tất cả
SINH VIÊN BTEC FPT NÁO NỨC ĂN TẾT BÊN CỒN TẠI LỄ HỘI XUÂN 2025 Tháng Một 15, 2025
Bên cồn có Tết thiệt vui Nhà F sum họp, ấm lòng đón xuân Vừa qua, sinh viên BTEC FPT HCM đã có cơ hội hòa mình vào không khí rộn ràng của Lễ Hội Xuân 2025 – Tết bên ...
CHIA SẺ TỪ CỰU SINH VIÊN BTEC FPT “HÀNH TRÌNH TRỞ THÀNH TRƯỞNG BỘ PHẬN CỦA MỘT CÔNG TY LẬP TRÌNH LỚN TẠI ĐÀ NẴNG” Tháng Một 6, 2025
Phan Lâm Quốc Việt, tên tiếng Anh là Donald. Là cựu sinh viên khóa 4 chuyên ngành Kỹ thuật Phần mềm tại BTEC FPT Đà Nẵng. Hiện tại, Việt đang đảm nhận vai trò Division Head kiêm Back-end Software Developer ...
“NGÀY TRỞ VỀ” VỠ OÀ CẢM XÚC VÀ ĐẦY HOÀI NIỆM CỦA CÁC CỰU SINH VIÊN BTEC FPT ĐÀ NẴNG Tháng Mười Hai 31, 2024
Như một giấc mơ đẹp vừa khép lại, Homecoming 2024 – “Kingdom Awaits” mang theo dư âm của sự rung động và những cảm xúc khó diễn tả thành lời. Đó không chỉ là ngày hội ngộ của những “đứa ...
TRẬN CẦU NẢY LỬA GIÚP LỘ DIỆN NHÀ VÔ ĐỊCH GIẢI BÓNG ĐÁ NAM BTEC FPT TP HCM Tháng Mười Hai 30, 2024
Ngày 22/12/2024 vừa qua, giải đấu bóng đá S5 FPI CUP 2024 đã chính thức khép lại đầy ấn tượng với trận chung kết nảy lửa giữa hai đội bóng xuất sắc: BRO và Phong Cách FC. Trận chung kết ...
CÁC THỦ LĨNH SINH VIÊN BTEC FPT TP HCM TỰ TIN BỨT PHÁ, VƯỢT CHÔNG GAI VỚI SỰ KIỆN CÓ “102” Tháng Mười Hai 30, 2024
Vừa qua, chuyến đi được mong đợi nhất năm của các Thủ lĩnh sinh viên BTEC FPT HCM - Leadership 2024 với chủ đề “Yes, we can” đã diễn ra tại Khu du lịch Thác Giang Điền - địa danh ...
CÁC “CHIẾN THẦN” THIẾT KẾ ĐỒ HOẠ TỎA SÁNG VỚI TÁC PHẨM ẤN TƯỢNG TRONG CUỘC THI “DEADLINE WARRIOR” Tháng Mười Hai 26, 2024
Cuộc thi Thiết Kế Đồ Họa “Deadline Warrior” đã chính thức khép lại nhưng dư âm của những cảm xúc, những câu chuyện đầy cảm hứng và những màn trình diễn xuất sắc vẫn còn đọng lại trong lòng tất ...

Nhập học liền tay

Nhận ngay học bổng lên tới 70% học phí