Phương trình mũ và cách giải nhanh nhất

Tháng Mười Hai 17, 2024

Phương trình mũ và cách giải nhanh nhất

Phương trình mũ và cách giải nhanh nhất

Trong toán học, phương trình mũ là một trong những chủ đề thú vị và quan trọng, thường gặp trong chương trình học phổ thông. Trong bài viết này, chúng ta sẽ cùng BTEC FPT khám phá lý thuyết cơ bản về phương trình mũ, cũng như các phương pháp giải nhanh nhất để giúp bạn làm bài thi một cách tự tin và chính xác. 

Lý thuyết phương trình mũ

Trước tiên muốn nắm rõ về một dạng bài học mới chúng ta sẽ cần tìm hiểu về ngọn ngành, lý thuyết đầu tiên của dạng bài đó. Tương tự như vậy chúng ta cần biết phương trình mũ là gì và có công thức như thế nào? 

  1. Phương trình mũ cơ bản

Hiểu một cách đơn giản nhất thì phương trình mũ là một dạng phương trình 2 vế trong đó có chứa biểu thức mũ 

Theo như định nghĩa trong chương trình THPT, chúng ta có định nghĩa và dạng tổng quát như sau: 

Phương trình có dạng a^x=b với a,b cho trước và 0<a ≠ 1

Phương trình mũ sẽ có nghiệm khi: 

  • Với b > 0 ⇔  a^x=b => x= logab
  • Với b<,= 0 ⇔ Phương trình mũ sẽ vô nghiệm 

Ví dụ: 6^x=216

 ⇔ x=logx216

⇔  x= 3

  1. Biến đổi, quy về cùng cơ số:

Biến đổi và quy về cùng cơ số là một trong những kỹ thuật quan trọng nhất khi giải phương trình mũ. Bằng cách đưa các số mũ về cùng cơ số, chúng ta có thể so sánh các số mũ và tìm ra nghiệm của phương trình.

Lý thuyết phương trình mũ

Lý thuyết phương trình mũ

Tại sao phải quy về cùng cơ số?

  • Đơn giản hóa: Khi các số mũ có cùng cơ số, việc so sánh và giải phương trình trở nên dễ dàng hơn.
  • Sử dụng tính chất của lũy thừa: Khi các số mũ có cùng cơ số, chúng ta có thể áp dụng các tính chất của lũy thừa để biến đổi phương trình.

af(x) = ag(x) ⇔ a = 1 hoặc 0 < a ≠ 1, f(x) = g(x)

  1. Đặt ẩn phụ

Đặt ẩn phụ là một kỹ thuật thường được sử dụng để giải các phương trình mũ phức tạp, đặc biệt là những phương trình có dạng đặc trưng. Bằng cách đặt một biểu thức chứa ẩn số ban đầu làm ẩn phụ mới, chúng ta có thể đưa phương trình về dạng quen thuộc hơn, dễ giải hơn.

f[ag(x)] = 0 ( 0 < a ≠ 1) ⇔ t = ag(x) > 0 , f(t) = 0

  1. Logarit hóa 

Phương trình af(x) = b <=> 0 < a ≠ 1, b > 0, f(x) = logab

Phương trình af(x) = bg(x) ⇔ logaaf(x) = logabg(x) ⇔ f(x) = g(x).logab

Công thức phương trình mũ 

Để tìm được ra cách giải của phương trình mũ, các bạn cần ghi nhớ các công thức cơ bản của số mũ phục vụ áp dụng trong các bước biến đổi. 

Phương trình mũ cơ bản

Phương trình ax=bax=b có nghiệm duy nhất x=logabx=logab.

Phương trình mũ có dạng a(mx+n)=ba(mx+n)=b

Phương trình này có nghiệm x=logab–nmx=logab–nm.

Phương trình mũ có dạng ax=akax=ak

Phương trình này có nghiệm x = k.

Một số dạng phương trình mũ thường gặp

Phương trình mũ cơ bản

ax=b(a≠1,b>0)ax=b(a≠1,b>0)

Phương trình mũ có dạng:

ax+bx=cax+bx=c

Phương trình mũ có dạng

a(x+m)=a(x+n)a(x+m)=a(x+n)

Logarit của tích

loga(xy)=loga(x)+loga(y)(a>0,a≠1,x>0,y>0)loga(xy)=loga(x)+loga(y)(a>0,a≠1,x>0,y>0)

Logarit của thương

loga(x/y)=loga(x)–loga(y)(a>0,a≠1,x>0,y>0)loga(x/y)=loga(x)–loga(y)(a>0,a≠1,x>0,y>0)

Logarit của lũy thừa

loga(xn)=n.loga(x)loga(xn)=n.loga(x) (a > 0, a ≠ 1, x > 0, n là số nguyên)

Logarit của căn bậc n

loga(√n)=1/n.loga(x)loga(√n)=1/n.loga(x) (a > 0, a ≠ 1, x > 0, n là số nguyên dương)

Đổi cơ số logarit

loga(x)=logb(x)/logb(a)loga(x)=logb(x)/logb(a) (a, b > 0, a ≠ 1, b ≠ 1, x > 0)

Logarit của 1

loga(1)=0loga(1)=0 (a > 0, a ≠ 1)

Logarit của số e

ln(x)=loge(x)(x>0)ln(x)=loge(x)(x>0)

Logarit của số 10

log(x)=log10(x)(x>0)log(x)=log10(x)(x>0)

Hằng số Euler

e≈2,71828

Công thức phương trình mũ

Công thức phương trình mũ

Cách giải phương trình mũ và ví dụ

Dạng 1: Giải phương trình mũ cơ bản:

ax=b(b>0)ax=b(b>0)

Phương pháp:

Lấy logarit hai vế của phương trình theo cùng cơ số.

Giải phương trình logarit thu được.

Ví dụ:

Giải phương trình 2x=82x=8

Lời giải:

Lấy logarit hai vế của phương trình theo cơ số 2, ta được:

log2(2x)=log2(8)log2(2x)=log2(8)

x=log2(8)=3x=log2(8)=3

Vậy nghiệm của phương trình là x = 3.

Dạng 2: Giải phương trình mũ dạng ẩn ở số mũ:

a(f(x)) = b (b>0)

Phương pháp:

Đặt ẩn phụ.

Giải phương trình thu được.

Ví dụ:

Giải phương trình 2(3x–1)=162(3x–1)=16.

Lời giải:

Đặt ẩn phụ t=3x–1t=3x–1, ta được:

2t=16=242t=16=24

t = 4.

3x – 1 = 4.

x=53x=53

Vậy nghiệm của phương trình là x=53x=53

Dạng 3: Giải phương trình mũ dạng tích:

ax+m=an.apax+m=an.ap

Phương pháp:

Chuyển vế và sử dụng tính chất của lũy thừa.

Giải phương trình thu được.

Ví dụ:

Giải phương trình 3x+2=35.323x+2=35.32

Lời giải:

Chuyển vế, ta được:

3(x+2)=3(5+2)3(x+2)=3(5+2)

x + 2 = 7.

x = 5.

Vậy nghiệm của phương trình là x = 5.

Dạng 4: Giải phương trình mũ dạng thương:

ax+m=an/apax+m=an/ap

Phương pháp:

Chuyển vế và sử dụng tính chất của lũy thừa.

Giải phương trình thu được.

Ví dụ:

Giải phương trình 2x–1=23/222x–1=23/22.

Lời giải:

Chuyển vế, ta được:

2x–1=23–22x–1=23–2

x – 1 = 1.

x = 2.

Vậy nghiệm của phương trình là x = 2.

 Với những kiến thức đã được trang bị về hàm số mũ với BTEC FPT các bạn thí sinh hoàn toàn có thể tự tin chinh phục mọi bài toán phương trình mũ. Hãy nhớ rằng, luyện tập thường xuyên là chìa khóa để thành công. Đừng ngần ngại chia sẻ bài viết này với bạn bè của bạn và cùng nhau khám phá thêm nhiều điều thú vị về thế giới toán học nhé!

 

btec BTEC FPT

Tin tức mới nhất

Xem tất cả
ĐI HỌC MÀ NHƯ ĐI LÀM THỰC TẾ TẠI FPT BTEC LÀ CẢM GIÁC NHƯ THẾ NÀO? Tháng Mười Một 7, 2025
Không chỉ chú trọng lý thuyết trên giảng đường, FPT BTEC coi “học đi đôi với hành” là kim chỉ nam trong đào tạo. Bên cạnh chương trình chuẩn Anh Quốc, nhà trường thường xuyên tổ chức các chuyến tham ...
HARMONY SMASH CUP 2025 – CẦU NỐI VĂN HÓA VÀ TINH THẦN THỂ THAO CỦA SINH VIÊN QUỐC TẾ Tháng Mười Một 6, 2025
Giải cầu lông Harmony Smash Cup 2025 đã khép lại với thật nhiều cảm xúc và khoảnh khắc đáng nhớ, đánh dấu một mùa thi đấu thành công rực rỡ của sinh viên FPT BTEC HCM. Không chỉ là sân ...
LÊ HOÀNG ĐỨC – TÂN THỦ KHOA NGÀNH QUẢN TRỊ KINH DOANH VÀ HÀNH TRÌNH KIÊN ĐỊNH VỚI NIỀM TIN THÀNH CÔNG Tháng Mười Một 4, 2025
Giữa khoảnh khắc trang nghiêm và xúc động của Lễ Tốt Nghiệp “A Compass For Every Dream” tại Nhà hát Trưng Vương, khi tiếng gọi tên Lê Hoàng Đức - BD00447 được xướng lên, cả khán phòng Nhà hát Trưng ...
NỮ THỦ KHOA NGÀNH LẬP TRÌNH TRẦN THỊ YẾN NHI – KHI ĐAM MÊ TRỞ THÀNH “LA BÀN” DẪN LỐI THÀNH CÔNG Tháng Mười Một 4, 2025
Trong buổi Lễ tốt nghiệp “A Compass For Every Dream” 2025 vừa qua, giữa khán phòng rực sáng ánh đèn tại Nhà hát Trưng Vương, tân khoa Trần Thị Yến Nhi (BD00466) - Thủ khoa ngành Lập trình máy tính ...
4 CÂU CHUYỆN, 1 TINH THẦN – NGỌN LỬA CAM DẪN ĐƯỜNG CHO THẾ HỆ SINH VIÊN FPT BTEC Tháng Mười Một 4, 2025
Trong không khí trang trọng và đầy cảm xúc của Lễ Tôn Vinh kỳ Summer 2025 “A Compass For Every Dream”, sân khấu nhà hát Trưng Vương Đà Nẵng lại một lần nữa bừng sáng với khoảnh khắc đặc biệt: ...
TRẦN THỊ MỸ LINH - THỦ KHOA THIẾT KẾ ĐỒ HỌA FPT BTEC ĐÀ NẴNG "VẼ" THÀNH CÔNG BẰNG CHÍNH ĐAM MÊ CỦA MÌNH Tháng Mười Một 1, 2025
Trong không khí trang trọng và đầy cảm xúc của Lễ Tốt nghiệp “A Compass For Every Dream”, mỗi danh hiệu được xướng lên là một câu chuyện trưởng thành, một hành trình nỗ lực không ngừng. Và giữa khoảnh ...

Nhập học liền tay

Nhận ngay học bổng lên tới 70% học phí

  • Đồng ý để dữ liệu cá nhân của Anh/Chị được thu thập trên trang này, được xử lý và lưu trữ bởi FPT BTEC - Trường Cao đẳng FPT Polytechnic (đơn vị thành viên của Công ty TNHH Giáo dục FPT hay còn gọi là Tổ chức giáo dục FPT) cho mục đích và theo điều kiện đã được công bộ tại Quy định bảo vệ dữ liệu cá nhân của Tổ chức giáo dục FPT tại đây.