Tổng hợp kiến thức phương trình mũ và logarit chi tiết

Tháng Mười Hai 13, 2024

Tổng hợp kiến thức phương trình mũ và logarit chi tiết

Tổng hợp kiến thức phương trình mũ và logarit chi tiết

Phương trình mũ và logarit là hai phần quan trọng trong chương trình toán học 12, không chỉ xuất hiện trong các bài thi mà còn trong nhiều lĩnh vực thực tiễn như tài chính, khoa học và công nghệ. Hiểu rõ về chúng giúp học sinh nắm vững các khái niệm và kỹ năng cần thiết để giải quyết các bài toán phức tạp. Bài viết này sẽ tổng hợp kiến thức chi tiết về phương trình mũ và logarit, từ định nghĩa, tính chất đến cách giải các dạng bài tập phổ biến. Hãy cùng khám phá để trang bị cho mình những kiến thức bổ ích và chuẩn bị tốt cho kỳ thi sắp tới!

Lý thuyết về Logarit 

Logarit thường được viết tắt là Log, là phép toán nghịch đảo của phép lũy thừa. Theo đó logarit của một số a là số mũ của cơ số b( có giá trị cố định), phải được nâng lũy thừa để tạo thành số a đó. 

Hiểu một cách đơn giản hơn thì logarit là một phép nhân có số lần lặp đi lặp lại ví dụ logax = y sẽ tương đương với ay = x. Nếu logarit cơ số 10 của 1000 là 3, ta có, 103 = 1000 nghĩa là 1000 = 10 x 10 x 10 = 103 hay log101000 = 3.

Tóm lại là lũy thừa của các số dương với số mũ bất kỳ có kết quả là một số dương. Do đó logarit dùng để tính toán phép nhân của 2 số dương bất kì luôn đi kèm điều kiện có 1 số dương khác 1.

Ta có thể tóm tắt gọn như sau: 

Cho 2 số dương a,b với a khác 1. Nghiệm duy nhất của phương trình an = b được gọi là logab (số n có tính chất là an = b).

Như vậy: logab = n ⇔ an = b.

Ngoài ra còn có logarit tự nhiên (còn gọi là Logarit Nepe) là logarit cơ số e do nhà toán học John Napier sáng tạo ra. Ký hiệu là lnx hay logex. Logarit tự nhiên của một số x là bậc của số e sao cho số e lũy thừa lên bằng x, nghĩa là lnx = a ⇔ ea=x. 

Lý thuyết về logarit

Lý thuyết về logarit

Tính chất của logarit 

Logarit có các tính chất rất phong phú, có thể chia ra thành các nhóm sau đây:

1) Logarit của đơn vị và logarit của cơ số:

Với cơ số tùy ý, ta luôn có loga1 = 0 và logaa= 1.

2) Phép mũ hóa và phép logarit hóa theo cùng cơ số (mũ hóa số thực α theo cơ số a là tính aα; logarit hóa số dương b theo cơ số a là tính logab) là hai phép toán ngược nhau.

Các dạng bài tập logarit 

Dạng 1: Tính giá trị biểu thức, rút gọn biểu thức logarit

  • Phương pháp: Áp dụng các tính chất của logarit để biến đổi biểu thức về dạng đơn giản nhất, rồi tính toán.
  • Các tính chất thường dùng:
  • logₐ1 = 0
  • logₐa = 1
  • logₐ(xy) = logₐx + logₐy
  • logₐ(x/y) = logₐx - logₐy
  • logₐ(x^n) = nlogₐx
  • Đổi cơ số: logₐb = (logₓb) / (logₓa)
  • Ví dụ:
  • Tính giá trị của biểu thức: A = log₂8 + log₂4
  • Giải: A = log₂(8*4) = log₂32 = 5
  • Lưu ý: Khi tính toán, cần chú ý đến điều kiện xác định của logarit (cơ số lớn hơn 0 và khác 1, số trong logarit lớn hơn 0).

Dạng 2: So sánh các biểu thức có chứa logarit

  • Phương pháp:
    • Đưa về cùng cơ số: Nếu các logarit có cơ số khác nhau, ta dùng công thức đổi cơ số để đưa về cùng cơ số.
  • Sử dụng tính chất đơn điệu của hàm số logarit:
  • Nếu a > 1 thì hàm số y = logₐx đồng biến trên (0; +∞)
  • Nếu 0 < a < 1 thì hàm số y = logₐx nghịch biến trên (0; +∞)
  • So sánh trực tiếp: Đưa các biểu thức về dạng cùng cơ số hoặc cùng số mũ để so sánh.
  • Ví dụ: So sánh A = log₂3 và B = log₃2
    • Giải: Ta có: log₂3 > 1 và log₃2 < 1. Vậy A > B.

Dạng 3: Biểu diễn một logarit hoặc rút gọn biểu thức có chứa logarit qua các logarit đã cho

  • Phương pháp:
  • Sử dụng các tính chất của logarit: Áp dụng các tính chất để biến đổi biểu thức về dạng cần tìm.
  • Đặt ẩn phụ: Đặt các biểu thức logarit đơn giản làm ẩn phụ để giải các phương trình, bất phương trình.
  • Ví dụ: Biểu diễn log₂15 qua log₂3 và log₂5
  • Giải: log₂15 = log₂(3*5) = log₂3 + log₂5
Các dạng bài tập logarit

Các dạng bài tập logarit

Cách giải các bài logarit

Dạng 1: Tính giá trị biểu thức, rút gọn biểu thức logarit

  • Phương pháp: Áp dụng các tính chất của logarit để biến đổi biểu thức về dạng đơn giản nhất, rồi tính toán.
  • Các tính chất thường dùng:
    • logₐ1 = 0
    • logₐa = 1
    • logₐ(xy) = logₐx + logₐy
    • logₐ(x/y) = logₐx - logₐy
    • logₐ(x^n) = nlogₐx
    • Đổi cơ số: logₐb = (logₓb) / (logₓa)
  • Ví dụ:
    • Tính giá trị của biểu thức: A = log₂8 + log₂4
    • Giải: A = log₂(8*4) = log₂32 = 5
  • Lưu ý: Khi tính toán, cần chú ý đến điều kiện xác định của logarit (cơ số lớn hơn 0 và khác 1, số trong logarit lớn hơn 0).

Dạng 2: So sánh các biểu thức có chứa logarit

  • Phương pháp:
    • Đưa về cùng cơ số: Nếu các logarit có cơ số khác nhau, ta dùng công thức đổi cơ số để đưa về cùng cơ số.
    • Sử dụng tính chất đơn điệu của hàm số logarit:
      • Nếu a > 1 thì hàm số y = logₐx đồng biến trên (0; +∞)
      • Nếu 0 < a < 1 thì hàm số y = logₐx nghịch biến trên (0; +∞)
    • So sánh trực tiếp: Đưa các biểu thức về dạng cùng cơ số hoặc cùng số mũ để so sánh.
  • Ví dụ: So sánh A = log₂3 và B = log₃2
    • Giải: Ta có: log₂3 > 1 và log₃2 < 1. Vậy A > B.

Dạng 3: Biểu diễn một logarit hoặc rút gọn biểu thức có chứa logarit qua các logarit đã cho

  • Phương pháp:
    • Sử dụng các tính chất của logarit: Áp dụng các tính chất để biến đổi biểu thức về dạng cần tìm.
    • Đặt ẩn phụ: Đặt các biểu thức logarit đơn giản làm ẩn phụ để giải các phương trình, bất phương trình.
  • Ví dụ: Biểu diễn log₂15 qua log₂3 và log₂5
    • Giải: log₂15 = log₂(3*5) = log₂3 + log₂5

Dạng 4: Phương pháp đưa về cùng cơ số giải logarit 12

một lưu ý nhỏ cho các bạn là trong quá trình biến đổi để tìm ra cách giải bài tập log toán 12, chúng ta thường quên việc kiểm soát miền xác định của những phương trình. 

Phương pháp giải dạng log 12 như sau: 

Trường hợp 1: logaf(x) = b => f(x) = ab

Trường hợp 2: Logaf(x) = logag(x) khi và chỉ khi f(x) = g(x)

Một số chuyên đề ôn tập về kiến thức phương trình mũ và logarit chi tiết 

Đề ôn tập số 1 - chuyên đề phương trình mũ & Logarit 

Đề ôn tập số 2 - chuyên đề phương trình mũ & Logarit 

Đề ôn tập số 3 - chuyên đề phương trình mũ & Logarit 

Như vậy, bài viết đã tổng hợp đầy đủ những kiến thức cơ bản và nâng cao về phương trình mũ và logarit, từ khái niệm đến các tính chất và cách giải các bài toán liên quan. Việc nắm vững những kiến thức này không chỉ giúp bạn làm bài thi tốt hơn mà còn ứng dụng hiệu quả trong thực tiễn. Hãy thường xuyên ôn tập và luyện tập để củng cố kỹ năng của mình. 

btec BTEC FPT

Tin tức mới nhất

Xem tất cả
2K7 CHÚ Ý: ĐIỂM MỚI TRONG CẤU TRÚC ĐỀ THI TỐT NGHIỆP THPT MÔN TIẾNG ANH NĂM 2025 Tháng Năm 12, 2025
Năm 2025 đánh dấu kỳ thi tốt nghiệp THPT đầu tiên dành cho học sinh theo học chương trình giáo dục phổ thông 2018. Điều này kéo theo những thay đổi đáng kể trong cấu trúc và nội dung đề ...
TẤT TẦN TẬT VỀ CUỘC THI "SHARE YOUR DREAMS" CỦA CAO ĐẲNG ANH QUỐC BTEC FPT Tháng Năm 6, 2025
CHÍNH THỨC MỞ ĐƠN ĐĂNG KÝ CUỘC THI “SHARE YOUR DREAMS” “VIẾT LUẬN HAY - HỌC BỔNG TRAO TAY” 🤔 Bạn đã bao giờ hình dung về cuộc sống sinh viên của mình trong vài năm tới? Bạn ấp ủ ...
HÀNH TRÌNH ẤN TƯỢNG TRỞ THÀNH TEAM LEADER TUYỂN SINH TẠI FPT POLYSCHOOL QUẢNG NAM CỦA CỰU SINH VIÊN BTEC FPT Tháng Năm 5, 2025
Người ta vẫn thường hay nói, khoảng cách từ giảng đường đến thị trường lao động không chỉ là thời gian, mà còn là bản lĩnh, là niềm tin và cả một hành trình nỗ lực không ngừng… Với Nguyễn ...
CHÍNH THỨC: THÍ SINH BẮT ĐẦU ĐĂNG KÝ THI TỐT NGHIỆP THPT TỪ HÔM NAY Tháng Tư 21, 2025
Từ ngày 21/4 đến 17h ngày 28/4, các bạn học sinh lớp 12 và thí sinh tự do sẽ có 8 ngày để đăng ký tham dự kỳ thi tốt nghiệp THPT. Theo hướng dẫn từ Bộ Giáo dục và ...
CAPSTONE PROJECT 2025 - CỘT MỐC VINH QUANG VÀ KHỞI ĐẦU MỚI CỦA SINH VIÊN QUẢN TRỊ KINH DOANH VÀ MARKETING BTEC FPT TP. HCM Tháng Tư 18, 2025
Vừa qua, tại Hội trường Lotus - Cao đẳng Anh Quốc BTEC FPT TP HCM đã diễn ra sự kiện Capstone Project 2025 dành cho sinh viên chuyên ngành Quản trị Kinh doanh và Marketing khóa 6. Đây không chỉ ...
NHỮNG KHOẢNH KHẮC ĐÁNG NHỚ TẠI LỄ BẢO VỆ DỰ ÁN TỐT NGHIỆP NGÀNH LẬP TRÌNH MÁY TÍNH CỦA SINH VIÊN BTEC FPT ĐÀ NẴNG Tháng Tư 18, 2025
Kết thúc Lễ bảo vệ dự án tốt nghiệp, các bạn sinh viên Khóa 6 ngành Lập trình máy tính BTEC FPT Đà Nẵng đã chính thức khép lại một chặng đường học tập đầy nỗ lực, đánh dấu cột ...

Nhập học liền tay

Nhận ngay học bổng lên tới 70% học phí