Bất phương trình mũ và logarit: Bài tập và cách giải

Tháng Mười Hai 18, 2024

Bất phương trình mũ và logarit: Bài tập và cách giải

bất phương trình mũ và logarit, bài tập và cách giải

Bạn đang gặp khó khăn trong việc giải các bài toán bất phương trình mũ và logarit? Các bất đẳng thức phức tạp, nhiều trường hợp đặc biệt khiến bạn cảm thấy rối rắm? Đừng lo lắng, bài viết này hãy để BTEC FPT giúp bạn làm chủ hoàn toàn dạng toán này. Chúng ta sẽ cùng nhau khám phá các phương pháp giải hiệu quả và làm sáng tỏ những vấn đề bạn đang gặp phải.

Lý thuyết bất phương trình mũ và logarit 

Trước tiên để hiểu rõ hơn về bất phương trình này chúng ta cần tìm hiểu rõ ràng lý thuyết của phương trình mũ và phương trình logarit là gì? 

  1. Bất phương trình mũ cơ bản 

Bất phương trình mũ có dạng cơ bản là ax > b (hoặc ax ≥ b, ax < b, ax ≤ b). Trong đó a,b là 2 số đã cho, với a > 0 và a  1.

Để giải các bất phương trình mũ cơ bản các bạn học sinh sẽ logarit hóa và sử dụng tính chất đơn điệu của hàm số logarit. Ta xét bất phương trình dạng ax > b như sau: 

  • Nếu b ≤ 0 thì tập nghiệm của bất phương trình là D = R vì ax > 0 ≥ b, ∀x ∈ R
  • Nếu b > 0 thì bất phương trình sẽ tương đương với ax > alogab.
  • Với a > 1, nghiệm của bất phương trình là x > logab.
  • Với 0 < a < 1, nghiệm của bất phương trình là x < logab.
  1. Bất phương trình logarit cơ bản 

Bất phương trình lôgarit cơ bản có dạng là logax > b (hoặc logax < b; logax ≥ b; logax ≤ b). Trong đó ta có a, b là hai số đã cho và a > 0, a ≠  1.

Để xử lý được các dạng bài về bất phương trình logarit cơ bản chúng ta sẽ phải mũ hóa dựa trên cơ sở sử dụng có tính chất đơn điệu của hàm số mũ. Ta xét bất phương trình logax > b theo 2 trường hợp như sau: 

a> 1, ta có logax > b ⇔ x > ab

0 < a < 1, ta có logax > b ⇔ 0 < x < a

Lưu ý: Các bất phương trình mũ, bất phương trình logarit cơ bản trong trường hợp b = ax và b = logaa thì có thể sử dụng được tính chất đơn điệu của hàm số mũ và hàm số logarit để giải. Các em không cần mũ hóa hay logarit hóa.

Nếu a > 1 thì ax > aa ⇔ x > a

Nếu 0 < a < 1 thì logax > logaa ⇔ 0 < x < a

Lý thuyết bất phương trình mu và logarit

Lý thuyết bất phương trình mu và logarit

Công thức bất phương trình mũ và logarit

Sau khi đã nắm bắt được lý thuyết của phương trình mũ và logarit chúng ta cần thêm những công thức để có thể giải một bài toán dạng này, hãy cùng BTEC FPT tìm hiểu nhé:

  1. Bất phương trình mũ: 

Phương trình có dạng: a^x=b (0 < a ≠ 1)

+) Với b>0 ta có a^x=b ⇔ logab

+) Với b≤0 thì phương trình sẽ vô nghiệm 

ax > b ( hoặc ax < b; ax <= b; ax >=b), trong đó a,b là hai số đã cho, a > 0, a ≠ 1

Ta thường giải bất phương trình mũ cơ bản bằng cách logarit hóa trên cơ sở sử dụng tính chất đơn điệu của hàm số lôgarit. Logarit hóa bất phương trình (mà cả hai vế đều dương) theo cơ số lớn hơn 1( nhỏ hơn 1 và đổi chiều bất phương trình) ta được bất phương trình tương đương (trường hợp một vế âm, một vế dương ta có thể kết luận ngay về tập nghiệm)

Nếu b>0 và a>1 thì

a^x>b ⇔ logaa^x > logab ⇔  x> logab

a^x≥b ⇔ x≥loga

a^x<b ⇔ x<loga

a^x≤b ⇔  x≤loga

- Nếu b > 0 và 0 < a < 1

a^x>b ⇔ logaa^x < logab ⇔  x< logab

a^x≥b ⇔ x≤loga

a^x<b ⇔ x>loga

a^x≤b ⇔ x≥loga

Ví dụ: Giải phương trình: 5^x=125

Ta có: 5^x=125 ⇔ x=log5125 ⇔  x=3 

  1. Bất phương trình logarit cơ bản 

Phương trình logarit có dạng: logax=b ⇔ x=a^b (0 < a ≠ 1)

Ta có: logax=b ⇔ x=a^b

trong đó a,b là hàm số đã cho, a>0 

Ta giải bất phương trình logarit cơ bản bằng cách mũ hóa sử dụng tính chất đơn điệu của hàm số mũ. Mũ hóa bất phương trình theo cơ số lớn hơn 1 (nhỏ hơn 1 và đổi chiều bất phương trình) ta được bất phương trình tương đương.

Công thức bất phương trình mũ và logarit

Công thức bất phương trình mũ và logarit

Cách giải bất phương trình mũ và ví dụ

Dạng 1: Giải bất phương trình logarit 

Phương pháp:

- Bước 1: Đặt điều kiện cho ẩn để các biểu thức có nghĩa.

- Bước 2: Sử dụng các phép biến đổi: đưa về cùng cơ số, đặt ẩn phụ, đưa về dạng tích, mũ hóa, dùng hàm số,…để giải bất phương trình.

- Bước 3: Kiểm tra điều kiện và kết luận tập nghiệm.

Dạng 2: Tìm điều kiện của tham số để bất phương trình có nghiệm.

Phương pháp:

- Bước 1: Đặt điều kiện cho ẩn để các biểu thức có nghĩa.

- Bước 2: Biến đổi bất phương trình đã cho, nêu điều kiện để bất phương trình có nghiệm hoặc biện luận theo m nghiệm của bất phương trình.

- Bước 3: Giải điều kiện ở trên để tìm và kết luận điều kiện tham số.

Dạng 3: Giải hệ phương trình bằng phương pháp biến đổi tương đương.

Phương pháp:

- Bước 1: Đặt điều kiện cho ẩn để các biểu thức trong hệ có nghĩa.

- Bước 2: Dùng các biến đổi tương đương (rút thế, công đại số,…) để nhận được phương trình 1 ẩn.

- Bước 3: Giải các phương trình một ẩn nhận được từ hệ.

- Bước 4: Kiểm tra điều kiện và kết luận nghiệm.

Một số ứng dụng thực tế của hàm số mũ và hàm số logarit

Hàm số mũ và logarit không chỉ là công cụ học thuật mà còn có nhiều ứng dụng thực tế trong cuộc sống hàng ngày và các lĩnh vực khoa học kỹ thuật. Dưới đây là một số ứng dụng phổ biến của chúng:

  • Tính lãi kép 
  • Độ pH trong hóa học 
  • Định luật phóng xạ 
  • Kiểm soát âm thanh và hình ảnh: Logarit giúp tính toán cường độ âm thanh (decibel) và độ sáng trong công nghệ xử lý âm thanh và hình ảnh.

Qua bài viết này, chúng ta đã cùng nhau khám phá và làm quen với các dạng bài tập bất phương trình mũ và logarit. Từ những kiến thức cơ bản đến các phương pháp giải nâng cao, hy vọng các thí sinh đã có một nền tảng vững chắc để chinh phục dạng toán này. Tuy nhiên, hành trình học tập là vô tận, hãy tiếp tục khám phá và chinh phục những thử thách mới nhé!

 

btec BTEC FPT

Tin tức mới nhất

Xem tất cả
SINH VIÊN BTEC FPT ĐÀ NẴNG THỬ THÁCH TINH THẦN THỦ LĨNH TỪ NHỮNG TRẢI NGHIỆM “SINH TỒN” Tháng Mười Hai 24, 2025
Chương trình "Leadership 2025 - Chapter II: Lead by Experience" tại BTEC FPT Đà Nẵng đã được triển khai không phải như một khóa học, mà như một hành trình trải nghiệm thực tế đầy thách thức dành riêng cho ...
"CREATIVE'S DAY": KHÔNG CÒN LÀ BÀI TẬP GIẢ LẬP, ĐỒ ÁN SINH VIÊN ĐƯỢC DOANH NGHIỆP "CHỐT ĐƠN’ NGAY TẠI CHỖ Tháng Mười Hai 24, 2025
Không gói gọn trong khuôn khổ lý thuyết, buổi bảo vệ dự án môn Advanced Graphic Design Studies vừa qua đã trở thành một "sàn diễn" thực thụ. Tại đây, sinh viên Thiết kế Đồ họa BTEC FPT Đà Nẵng ...
SINH VIÊN BTEC “MỤC SỞ THỊ” DÂY CHUYỀN SẢN XUẤT BAO BÌ: HÀNH TRÌNH TỪ BẢN VẼ ĐẾN TAY NGƯỜI TIÊU DÙNG TẠI DU MỤC ART Tháng Mười Hai 23, 2025
Một bản thiết kế đẹp trên màn hình máy tính chưa chắc đã là một sản phẩm tốt khi ra xưởng in. Chân lý nghề nghiệp này đã được sinh viên K7 chuyên ngành Thiết kế Đồ họa BTEC FPT ...
SINH VIÊN BTEC FPT BẢO VỆ ĐỒ ÁN: SẴN SÀNG TRƯỚC NHỮNG ĐÒI THỰC TẾ VÀ KHẮT KHE CỦA THỊ TRƯỜNG Tháng Mười Hai 22, 2025
Lễ Bảo vệ Đồ án Tốt nghiệp 2025 của ngành Kỹ thuật phần mềm BTEC FPT TP.HCM vừa khép lại, mở ra hành trình đầy hứa hẹn cho thế hệ kỹ sư tương lai. Sự kiện ghi nhận sự trưởng ...
DỰ ÁN SINH VIÊN BTEC FPT CHINH PHỤC CUỘC THI KHỞI NGHIỆP: PETBK - LỜI GIẢI THÔNG MINH CHO NGÀNH SPA THÚ CƯNG Tháng Mười Hai 20, 2025
Được mệnh danh là bệ phóng cho những kỳ lân công nghệ tương lai, cuộc thi FINC+ 2025 đã chứng kiến sinh viên BTEC FPT tạo nên cơn địa chấn với dự án PetBK. Thay vì vẽ ra những viễn ...
GỬI 2025: CẢM ƠN MỘT NĂM RỰC RỠ ĐÃ CHO SINH VIÊN BTEC FPT “DÁM MƠ LỚN - DÁM THỰC HIỆN” Tháng Mười Hai 19, 2025
Năm 2025 đã đi qua, để lại một hành trình đầy cảm xúc với những dấu ấn không thể nào quên đối với BTEC FPT. Đây là năm của những 'người tiên phong' vươn ra biển lớn, năm của sự ...

Nhập học liền tay

Nhận ngay học bổng lên tới 70% học phí

  • Đồng ý để dữ liệu cá nhân của Anh/Chị được thu thập trên trang này, được xử lý và lưu trữ bởi FPT BTEC - Trường Cao đẳng FPT Polytechnic (đơn vị thành viên của Công ty TNHH Giáo dục FPT hay còn gọi là Tổ chức giáo dục FPT) cho mục đích và theo điều kiện đã được công bộ tại Quy định bảo vệ dữ liệu cá nhân của Tổ chức giáo dục FPT tại đây.